
François Pompanon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards nextâ€generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 2012, 21, 2045-2050.	3.9	1,253
2	How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 2004, 13, 3261-3273.	3.9	1,227
3	Species detection using environmental DNA from water samples. Biology Letters, 2008, 4, 423-425.	2.3	1,216
4	Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 2005, 6, 847-859.	16.3	954
5	Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 2012, 21, 1931-1950.	3.9	913
6	Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 2007, 35, e14-e14.	14.5	842
7	DNA barcoding for ecologists. Trends in Ecology and Evolution, 2009, 24, 110-117.	8.7	803
8	Replication levels, false presences and the estimation of the presence/absence from <scp>eDNA</scp> metabarcoding data. Molecular Ecology Resources, 2015, 15, 543-556.	4.8	517
9	Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 2011, 6, e23398.	2.5	507
10	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	27.8	505
11	DNA metabarcoding and the cytochrome <i>c</i> oxidase subunit I marker: not a perfect match. Biology Letters, 2014, 10, 20140562.	2.3	445
12	ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 2011, 39, e145-e145.	14.5	416
13	An In silico approach for the evaluation of DNA barcodes. BMC Genomics, 2010, 11, 434.	2.8	370
14	New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the <i>trn</i> L approach. Molecular Ecology Resources, 2009, 9, 51-60.	4.8	358
15	The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17659-17664.	7.1	279
16	Explorative Genome Scan to Detect Candidate Loci for Adaptation Along a Gradient of Altitude in the Common Frog (Rana temporaria). Molecular Biology and Evolution, 2006, 23, 773-783.	8.9	276
17	Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Molecular Ecology, 2012, 21, 1816-1820.	3.9	264
18	DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21, 3647-3655.	3.9	262

François Pompanon

#	Article	IF	CITATIONS
19	Carnivore diet analysis based on nextâ€generation sequencing: application to the leopard cat (<i>Prionailurus bengalensis</i>) in Pakistan. Molecular Ecology, 2012, 21, 1951-1965.	3.9	244
20	Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 2018, 9, 813.	12.8	220
21	Are cattle, sheep, and goats endangered species?. Molecular Ecology, 2008, 17, 275-284.	3.9	217
22	Population Adaptive Index: a New Method to Help Measure Intraspecific Genetic Diversity and Prioritize Populations for Conservation. Conservation Biology, 2007, 21, 697-708.	4.7	186
23	Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity. PLoS ONE, 2007, 2, e1012.	2.5	185
24	Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science, 2018, 361, 85-88.	12.6	149
25	Conservation genetics of cattle, sheep, and goats. Comptes Rendus - Biologies, 2011, 334, 247-254.	0.2	137
26	Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nature Communications, 2018, 9, 859.	12.8	126
27	Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution, 2010, 54, 315-326.	2.7	124
28	Prey Preference of Snow Leopard (Panthera uncia) in South Gobi, Mongolia. PLoS ONE, 2012, 7, e32104.	2.5	110
29	Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Frontiers in Genetics, 2015, 6, 107.	2.3	108
30	Universal DNA-Based Methods for Assessing the Diet of Grazing Livestock and Wildlife from Feces. Journal of Agricultural and Food Chemistry, 2009, 57, 5700-5706.	5.2	80
31	Optimizing the tradeâ€off between spatial and genetic sampling efforts in patchy populations: towards a better assessment of functional connectivity using an individualâ€based sampling scheme. Molecular Ecology, 2013, 22, 5516-5530.	3.9	79
32	Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Frontiers in Genetics, 2015, 6, 314.	2.3	64
33	Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genomics, 2015, 16, 1115.	2.8	56
34	Evidence for a Substrate-Borne Sex Pheromone in the Parasitoid Wasp Trichogramma brassicae. Journal of Chemical Ecology, 1997, 23, 1349-1360.	1.8	53
35	Forest without prey: livestock sustain a leopard <i>Panthera pardus</i> population in Pakistan. Oryx, 2015, 49, 248-253.	1.0	53
36	Emergence rhythms and protandry in relation to daily patterns of locomotor activity inTrichogramma species. Evolutionary Ecology, 1995, 9, 467-477.	1.2	50

#	Article	IF	CITATIONS
37	Use of Amplified Fragment Length Polymorphism (AFLP) Markers in Surveys of Vertebrate Diversity. Methods in Enzymology, 2005, 395, 145-161.	1.0	40
38	Skin swabbing as a new efficient DNA sampling technique in amphibians, and 14 new microsatellite markers in the alpine newt (<i>Ichthyosaura alpestris</i>). Molecular Ecology Resources, 2012, 12, 524-531.	4.8	39
39	Speciation in the Globeflower Fly Chiastocheta spp. (Diptera: Anthomyiidae) in Relation to Host Plant Species, Biogeography, and Morphology. Molecular Phylogenetics and Evolution, 2002, 22, 258-268.	2.7	38
40	A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. Conservation Genetics, 2014, 15, 453-468.	1.5	37
41	Animal performances, pasture biodiversity and dairy product quality: How it works in contrasted mountain grazing systems. Agriculture, Ecosystems and Environment, 2014, 185, 231-244.	5.3	31
42	An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Molecular Ecology Resources, 2019, 19, 1497-1515.	4.8	31
43	Inhibition of sex pheromone communications of <i>Trichogramma brassicae</i> (Hymenoptera) by the insecticide chlorpyrifos. Environmental Toxicology and Chemistry, 1998, 17, 1107-1113.	4.3	30
44	Physiological and genetic factors as sources of variation in locomotion and activity rhythm in a parasitoid wasp (Trichogramma brassicae). Physiological Entomology, 1999, 24, 346-357.	1.5	28
45	CE-SSCP and CE-FLA, simple and high-throughput alternatives for fungal diversity studies. Journal of Microbiological Methods, 2008, 72, 42-53.	1.6	28
46	Behavioural circadian rhythms measured in real-time by automatic image analysis: applications in parasitoid insects. Physiological Entomology, 1994, 19, 1-8.	1.5	27
47	Evolutionary history and taxonomy of a short-horned grasshopper subfamily: The Melanoplinae (Orthoptera: Acrididae). Molecular Phylogenetics and Evolution, 2011, 58, 22-32.	2.7	27
48	Variation in predation costs with Chiastocheta egg number on Trollius europaeus : how many seeds to pay for pollination?. Ecological Entomology, 2001, 26, 56-62.	2.2	25
49	Polymorphic microsatellite DNA loci identified in the common frog (Rana temporaria, Amphibia,) Tj ETQq1 1 0.78	4314 rgBT 1.7	/Qyerlock 1
50	Next generation sequencing for characterizing biodiversity: promises and challenges. Genetica, 2015, 143, 133-138.	1.1	22
51	Altitudinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, 2021, 12, 679428.	3.6	22
52	Genetic homogenization of indigenous sheep breeds in Northwest Africa. Scientific Reports, 2019, 9, 7920.	3.3	20
53	Patterns ofÂresource exploitation inÂfourÂcoexisting globeflower fly species (Chiastocheta sp.). Acta Oecologica, 2006, 29, 233-240.	1.1	19
54	Isolation and characterization of microsatellites in European alpine marmots (Marmota marmota). Molecular Ecology Notes, 2003, 3, 189-190.	1.7	18

François Pompanon

#	Article	IF	CITATIONS
55	Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?. Journal of Animal Breeding and Genetics, 2017, 134, 78-84.	2.0	18
56	Local adaptations of Mediterranean sheep and goats through an integrative approach. Scientific Reports, 2021, 11, 21363.	3.3	18
57	INHIBITION OF SEX PHEROMONE COMMUNICATIONS OF TRICHOGRAMMA BRASSICAE (HYMENOPTERA) BY THE INSECTICIDE CHLORPYRIFOS. Environmental Toxicology and Chemistry, 1998, 17, 1107.	4.3	17
58	VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics Selection Evolution, 2021, 53, 86.	3.0	16
59	Inside the Melanoplinae: New molecular evidence for the evolutionary history of the Eurasian Podismini (Orthoptera: Acrididae). Molecular Phylogenetics and Evolution, 2014, 71, 224-233.	2.7	15
60	Effect of diapause and developmental host species on the circadian locomotor activity rhythm of Trichogramma brassicae females. Entomologia Experimentalis Et Applicata, 1997, 82, 231-234.	1.4	13
61	Mitochondrial DNA polymorphism in Moroccan goats. Small Ruminant Research, 2011, 98, 201-205.	1.2	13
62	Genetic homogeneity of North-African goats. PLoS ONE, 2018, 13, e0202196.	2.5	12
63	A Dig into the Past Mitochondrial Diversity of Corsican Goats Reveals the Influence of Secular Herding Practices. PLoS ONE, 2012, 7, e30272.	2.5	10
64	Old origin of a protective endogenous retrovirus (enJSRV) in the Ovis genus. Heredity, 2019, 122, 187-194.	2.6	10
65	Search for Selection Signatures Related to Trypanosomosis Tolerance in African Goats. Frontiers in Genetics, 2021, 12, 715732.	2.3	8
66	Isolation and characterization of microsatellites in a perennial Apiaceae, Eryngium alpinum L Molecular Ecology Notes, 2002, 2, 107-109.	1.7	7
67	Genome-Wide Detection of Structural Variations Reveals New Regions Associated with Domestication in Small Ruminants. Genome Biology and Evolution, 2021, 13, .	2.5	7
68	EVOSHEEP: the makeup of sheep breeds in the ancient Near East. Antiquity, 2021, 95, .	1.0	4
69	Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Frontiers in Genetics, 2021, 12, 745284.	2.3	4
70	Broad maternal geographic origin of domestic sheep in Anatolia and the Zagros. Animal Genetics, 2022, 53, 452-459.	1.7	3
71	Genomic Uniqueness of Local Sheep Breeds From Morocco. Frontiers in Genetics, 2021, 12, 723599.	2.3	2
72	S0125 Changing patterns of genomic variability following domestication of sheep. Journal of Animal Science, 2016, 94, 13-13.	0.5	1

5

#	Article	IF	CITATIONS
73	Goat: Domestication. , 2020, , 4604-4607.		0