
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure–performance correlations in the hybrid oxide-supported copper–zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57, 3268-3279.	3.7	8
2	Hybrid monometallic and bimetallic copper–palladium zeolite catalysts for direct synthesis of dimethyl ether from CO ₂ . New Journal of Chemistry, 2022, 46, 3889-3900.	2.8	8
3	Efficient Promoters and Reaction Paths in the CO ₂ Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catalysis, 2022, 12, 3211-3225.	11.2	29
4	Multi-output machine learning models for kinetic data evaluation : A Fischer–Tropsch synthesis case study. Chemical Engineering Journal, 2022, 446, 137186.	12.7	16
5	Dual Metal–Acid Pd-Br Catalyst for Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran at Ambient Temperature. ACS Catalysis, 2021, 11, 19-30.	11.2	65
6	Preparation of alumina based tubular asymmetric membranes incorporated with coal fly ash by centrifugal casting. Ceramics International, 2021, 47, 4187-4196.	4.8	21
7	Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 2021, 50, 2337-2366.	38.1	188
8	Lignin Compounds to Monoaromatics: Selective Cleavage of Câ^'O Bonds over a Brominated Ruthenium Catalyst. Angewandte Chemie - International Edition, 2021, 60, 12513-12523.	13.8	53
9	Lignin Compounds to Monoaromatics: Selective Cleavage of Câ^'O Bonds over a Brominated Ruthenium Catalyst. Angewandte Chemie, 2021, 133, 12621-12631.	2.0	10
10	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	30.2	253
11	Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Applied Catalysis B: Environmental, 2021, 286, 119913.	20.2	78
12	Embryonic zeolites for highly efficient synthesis of dimethyl ether from syngas. Microporous and Mesoporous Materials, 2021, 322, 111138.	4.4	9
13	Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nature Catalysis, 2021, 4, 595-606.	34.4	52
14	Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid. Applied Catalysis B: Environmental, 2021, 290, 120036.	20.2	43
15	Design of ruthenium-zeolite nanocomposites for enhanced hydrocarbon synthesis from syngas. Journal of Materials Science, 2021, 56, 18019-18030.	3.7	5
16	Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Applied Catalysis B: Environmental, 2021, 292, 120141.	20.2	35
17	Bismuth mobile promoter and cobalt-bismuth nanoparticles in carbon nanotube supported Fischer-Tropsch catalysts with enhanced stability. Journal of Catalysis, 2021, 401, 102-114.	6.2	9
18	Unravelling the influence of catalyst properties on light olefin production via Fischer–Tropsch synthesis: A descriptor space investigation using Single-Event MicroKinetics. Chemical Engineering Journal, 2021, 419, 129633.	12.7	10

#	Article	IF	CITATIONS
19	Machine learning based interpretation of microkinetic data: a Fischer–Tropsch synthesis case study. Reaction Chemistry and Engineering, 2021, 7, 101-110.	3.7	12
20	lron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis. Journal of Catalysis, 2021, 404, 306-323.	6.2	9
21	Assessment of metal sintering in the copper-zeolite hybrid catalyst for direct dimethyl ether synthesis using synchrotron-based X-ray absorption and diffraction. Catalysis Today, 2020, 343, 199-205.	4.4	4
22	Size and promoter effects on iron nanoparticles confined in carbon nanotubes and their catalytic performance in light olefin synthesis from syngas. Catalysis Today, 2020, 357, 203-213.	4.4	17
23	Selective Deposition of Cobalt and Copper Oxides on BiVO ₄ Facets for Enhancement of CO ₂ Photocatalytic Reduction to Hydrocarbons. ChemCatChem, 2020, 12, 740-749.	3.7	28
24	The Fischer–Tropsch reaction in the aqueous phase over rhodium catalysts: a promising route to selective synthesis and separation of oxygenates and hydrocarbons. Chemical Communications, 2020, 56, 277-280.	4.1	6
25	Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nature Energy, 2020, 5, 511-519.	39.5	130
26	Alcohol amination over titania-supported ruthenium nanoparticles. Catalysis Science and Technology, 2020, 10, 4396-4404.	4.1	15
27	Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas. Chemical Science, 2020, 11, 6167-6182.	7.4	17
28	Number and intrinsic activity of cobalt surface sites in platinum promoted zeolite catalysts for carbon monoxide hydrogenation. Catalysis Science and Technology, 2020, 10, 2137-2144.	4.1	4
29	Highly Efficient and Selective N-Alkylation of Amines with Alcohols Catalyzed by in Situ Rehydrated Titanium Hydroxide. ACS Catalysis, 2020, 10, 3404-3414.	11.2	24
30	Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 2020, 10, 2544-2555.	11.2	34
31	Disassembly of Supported Co and Ni Nanoparticles by Carbon Deposition for the Synthesis of Highly Dispersed and Active Catalysts. ACS Catalysis, 2020, 10, 6231-6239.	11.2	5
32	Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental, 2020, 273, 119028.	20.2	45
33	Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catalysis, 2020, 10, 5554-5566.	11.2	39
34	A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts. Green Chemistry, 2020, 22, 4270-4278.	9.0	19
35	Synergy of nanoconfinement and promotion in the design of efficient supported iron catalysts for direct olefin synthesis from syngas. Journal of Catalysis, 2019, 376, 1-16.	6.2	26
36	Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalysts. ACS Applied Nano Materials, 2019, 2, 4507-4517.	5.0	9

#	Article	IF	CITATIONS
37	Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature. Nanoscale Advances, 2019, 1, 4321-4330.	4.6	6
38	Influence of sintering temperature on the development of alumina membrane shaped by centrifugal casting for gas separation. Ceramica, 2019, 65, 99-103.	0.8	4
39	Catalyst Deactivation for Enhancement of Selectivity in Alcohols Amination to Primary Amines. ACS Catalysis, 2019, 9, 5986-5997.	11.2	36
40	External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials, 2019, 286, 57-64.	4.4	44
41	Ion-exchanged zeolite P as a nanostructured catalyst for biodiesel production. Energy Reports, 2019, 5, 357-363.	5.1	16
42	Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nature Communications, 2019, 10, 700.	12.8	98
43	In Situ Generation of BrÃ,nsted Acidity in the Pd-I Bifunctional Catalysts for Selective Reductive Etherification of Carbonyl Compounds under Mild Conditions. ACS Catalysis, 2019, 9, 2940-2948.	11.2	53
44	Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. Journal of Materials Science, 2019, 54, 5399-5411.	3.7	27
45	Self-Regeneration of Cobalt and Nickel Catalysts Promoted with Bismuth for Non-deactivating Performance in Carbon Monoxide Hydrogenation. ACS Catalysis, 2019, 9, 991-1000.	11.2	14
46	Influence of Impregnation and Ion Exchange Sequence on Metal Localization, Acidity and Catalytic Performance of Cobalt BEA Zeolite Catalysts in Fischerâ€Tropsch Synthesis. ChemCatChem, 2019, 11, 568-574.	3.7	20
47	Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts. Applied Catalysis B: Environmental, 2018, 234, 153-166.	20.2	68
48	Direct Production of Isoâ€Paraffins from Syngas over Hierarchical Cobaltâ€ZSMâ€5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 2018, 10, 2291-2299.	3.7	25
49	Selectivity shift from paraffins to α-olefins in low temperature Fischer–Tropsch synthesis in the presence of carboxylic acids. Chemical Communications, 2018, 54, 2345-2348.	4.1	18
50	Structure-Sensitive and Insensitive Reactions in Alcohol Amination over Nonsupported Ru Nanoparticles. ACS Catalysis, 2018, 8, 11226-11234.	11.2	60
51	Ruthenium silica nanoreactors with varied metal–wall distance for efficient control of hydrocarbon distribution in Fischer–Tropsch synthesis. Journal of Catalysis, 2018, 365, 429-439.	6.2	13
52	Promotion of lanthanum-supported cobalt-based catalysts for the Fischer–Tropsch reaction. Comptes Rendus Chimie, 2017, 20, 40-46.	0.5	20
53	Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2017, 7, 2325-2334.	4.1	52
54	Syngas to Chemicals: The Incorporation of Aldehydes into Fischer–Tropsch Synthesis. ChemCatChem, 2017, 9, 1040-1046.	3.7	9

#	Article	IF	CITATIONS
55	Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes. Catalysis Today, 2017, 298, 145-157.	4.4	32
56	Effect of potassium promotion on the structure and performance of alumina supported carburized molybdenum catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 542, 154-162.	4.3	35
57	New shearing mechanical coating technology for synthesis of alumina-supported cobalt Fischer–Tropsch solid catalysts. Journal of Materials Chemistry A, 2017, 5, 9148-9155.	10.3	11
58	Design of nanocomposites with cobalt encapsulated in the zeolite micropores for selective synthesis of isoparaffins in Fischer–Tropsch reaction. Catalysis Science and Technology, 2017, 7, 5019-5027.	4.1	40
59	Soldering of Iron Catalysts for Direct Synthesis of Light Olefins from Syngas under Mild Reaction Conditions. ACS Catalysis, 2017, 7, 6445-6452.	11.2	42
60	Optimization of solvent-free mechanochemical synthesis of Co/Al2O3 catalysts using low- and high-energy processes. Journal of Materials Science, 2017, 52, 12031-12043.	3.7	11
61	New molybdenum-based catalysts for dry reforming of methane in presence of sulfur: A promising way for biogas valorization. Catalysis Today, 2017, 289, 143-150.	4.4	39
62	Mechanistic Aspects of the Activation of Silica‣upported Iron Catalysts for Fischer–Tropsch Synthesis in Carbon Monoxide and Syngas. ChemCatChem, 2016, 8, 390-395.	3.7	17
63	Solvent-free synthesis of alumina supported cobalt catalysts for Fischer–Tropsch synthesis. Journal of Energy Chemistry, 2016, 25, 1001-1007.	12.9	12
64	The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2016, 337, 260-271.	6.2	72
65	Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis using SSITKA. Journal of Catalysis, 2016, 344, 669-679.	6.2	37
66	The Role of Steric Effects and Acidity in the Direct Synthesis of <i>iso</i> â€Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 2016, 8, 380-389.	3.7	47
67	Effects of co-feeding with nitrogen-containing compounds on the performance of supported cobalt and iron catalysts in Fischer–Tropsch synthesis. Catalysis Today, 2016, 275, 84-93.	4.4	22
68	Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. Journal of Catalysis, 2016, 338, 227-238.	6.2	71
69	Design of iron catalysts supported on carbon–silica composites with enhanced catalytic performance in high-temperature Fischer–Tropsch synthesis. Catalysis Science and Technology, 2016, 6, 4953-4961.	4.1	26
70	Nanoreactors: An Efficient Tool To Control the Chain-Length Distribution in Fischer–Tropsch Synthesis. ACS Catalysis, 2016, 6, 1785-1792.	11.2	70
71	Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation. Catalysis Today, 2016, 261, 137-145.	4.4	16
72	Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts. Journal of Catalysis, 2015, 328, 139-150.	6.2	151

#	Article	IF	CITATIONS
73	Speciation of Ruthenium as a Reduction Promoter of Silica-Supported Co Catalysts: A Time-Resolved in Situ XAS Investigation. ACS Catalysis, 2015, 5, 1273-1282.	11.2	76
74	The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis. Catalysis Science and Technology, 2015, 5, 1433-1437.	4.1	73
75	Opportunities for intensification of Fischer–Tropsch synthesis through reduced formation of methane over cobalt catalysts in microreactors. Catalysis Science and Technology, 2015, 5, 1400-1411.	4.1	38
76	Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 502, 204-214.	4.3	78
77	Effect of Sn additives on the CuZnAl–HZSM-5 hybrid catalysts for the direct DME synthesis from syngas. Applied Catalysis A: General, 2015, 502, 370-379.	4.3	31
78	Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance (Review). Catalysis Today, 2015, 256, 41-48.	4.4	55
79	Impact of potassium content on the structure of molybdenum nanophases in alumina supported catalysts and their performance in carbon monoxide hydrogenation. Applied Catalysis A: General, 2015, 504, 565-575.	4.3	28
80	Effect of a carrier's nature on the activation of supported iron catalysts. Russian Journal of Physical Chemistry A, 2015, 89, 2032-2035.	0.6	1
81	Heterogeneously catalyzed reactive extraction for biomass valorization into chemicals and fuels. Green Processing and Synthesis, 2015, 4, .	3.4	2
82	Mastering a biphasic single-reactor process for direct conversion of glycerol into liquid hydrocarbon fuels. Green Chemistry, 2014, 16, 2128-2131.	9.0	4
83	Molecular structure and localization of carbon species in alumina supported cobalt Fischer–Tropsch catalysts in a slurry reactor. Catalysis Today, 2014, 228, 65-76.	4.4	32
84	Effects of Metal Promotion on the Performance of CuZnAl Catalysts for Alcohol Synthesis. ChemCatChem, 2014, 6, 1788-1793.	3.7	50
85	Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction. Applied Catalysis A: General, 2014, 481, 116-126.	4.3	57
86	Direct Evidence of Surface Oxidation of Cobalt Nanoparticles in Alumina-Supported Catalysts for Fischer–Tropsch Synthesis. ACS Catalysis, 2014, 4, 4510-4515.	11.2	62
87	Impact and Detailed Action of Sulfur in Syngas on Methane Synthesis on Ni/I³-Al ₂ O ₃ Catalyst. ACS Catalysis, 2014, 4, 2785-2791.	11.2	49
88	Fischer–Tropsch synthesis on a ruthenium catalyst in two-phase systems: an excellent opportunity for the control of reaction rate and selectivity. Catalysis Science and Technology, 2014, 4, 2896-2899.	4.1	23
89	The role of external acid sites of ZSM-5 in deactivation of hybrid CuZnAl/ZSM-5 catalyst for direct dimethyl ether synthesis from syngas. Applied Catalysis A: General, 2014, 486, 266-275.	4.3	62
90	Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014, 488, 66-77.	4.3	92

#	Article	IF	CITATIONS
91	Effect of Different Reaction Conditions on the Deactivation of Alumina-Supported Cobalt Fischer–Tropsch Catalysts in a Milli-Fixed-Bed Reactor: Experiments and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6913-6922.	3.7	42
92	Size effects in the sequential oxidation-reduction of Co nanoparticles in the Co/SiO2 catalyst. Russian Journal of Physical Chemistry A, 2013, 87, 1349-1352.	0.6	5
93	Deactivation of a Co/Al2O3 Fischer–Tropsch catalyst by water-induced sintering in slurry reactor: Modeling and experimental investigations. Catalysis Today, 2013, 215, 52-59.	4.4	49
94	Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde. Applied Catalysis B: Environmental, 2013, 138-139, 381-390.	20.2	82
95	Influence of operating conditions in a continuously stirred tank reactor on the formation of carbon species on alumina supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 2013, 215, 43-51.	4.4	39
96	Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas. Fuel, 2013, 111, 845-854.	6.4	45
97	De Novo Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts. Angewandte Chemie - International Edition, 2013, 52, 4397-4401.	13.8	103
98	Dimensional Effects in the Carbidization of Supported Iron Nanoparticles. ChemCatChem, 2013, 5, 1758-1761.	3.7	10
99	Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics. Fuel, 2013, 107, 254-260.	6.4	34
100	Influence of the support and promotion on the structure and catalytic performance of copper–cobalt catalysts for carbon monoxide hydrogenation. Fuel, 2013, 103, 1111-1122.	6.4	57
101	Agglomeration at the Micrometer Length Scale of Cobalt Nanoparticles in Aluminaâ€Supported Fischer–Tropsch Catalysts in a Slurry Reactor. ChemCatChem, 2013, 5, 728-731.	3.7	17
102	Mechanistic Modeling of Cobalt Based Catalyst Sintering in a Fixed Bed Reactor under Different Conditions of Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 11955-11964.	3.7	69
103	Structure and catalytic performance of alumina-supported copper–cobalt catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 2012, 286, 51-61.	6.2	186
104	A Timeâ€Resolved In Situ Quickâ€XAS Investigation of Thermal Activation of Fischer–Tropsch Silicaâ€ S upported Cobalt Catalysts. Chemistry - A European Journal, 2012, 18, 2802-2805.	3.3	24
105	β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 2011, 47, 10767.	4.1	36
106	Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. Journal of Catalysis, 2011, 277, 14-26.	6.2	211
107	Impact of sorbitol addition on the structure and performance of silica-supported cobalt catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2011, 175, 528-533.	4.4	39
108	Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis. Catalysis Today, 2011, 164, 62-67.	4.4	87

#	Article	IF	CITATIONS
109	Influence of sub-stoichiometric sorbitol addition modes on the structure and catalytic performance of alumina-supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 2011, 171, 180-185.	4.4	27
110	Fischer–Tropsch synthesis in milli-fixed bed reactor: Comparison with centimetric fixed bed and slurry stirred tank reactors. Catalysis Today, 2011, 171, 201-206.	4.4	53
111	Plasma-assisted design of supported cobalt catalysts for Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis, 2010, , 253-257.	1.5	8
112	Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer–Tropsch catalysts. Journal of Catalysis, 2010, 273, 9-17.	6.2	103
113	TAP investigation of hydrogen and carbon monoxide adsorption on a silica-supported cobalt catalyst. Applied Catalysis A: General, 2010, 375, 116-123.	4.3	10
114	Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2010, 382, 28-35.	4.3	36
115	In situXRD investigation of the evolution of alumina-supported cobaltcatalysts under realistic conditions of Fischer-Tropsch synthesis. Chemical Communications, 2010, 46, 788-790.	4.1	110
116	Characterization of cobalt nanoparticles on different supports for Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis, 2010, 175, 763-766.	1.5	2
117	Magnetic Characterization of Fischer-Tropsch Catalysts. Oil and Gas Science and Technology, 2009, 64, 25-48.	1.4	47
118	Enhancing cobalt dispersion in supported Fischer-Tropsch catalysts via controlled decomposition of cobalt precursors. Brazilian Journal of Physics, 2009, 39, 171-175.	1.4	30
119	Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review. Oil and Gas Science and Technology, 2009, 64, 11-24.	1.4	156
120	Cobalt supported on alumina and silica-doped alumina: Catalyst structure and catalytic performance in Fischer–Tropsch synthesis. Comptes Rendus Chimie, 2009, 12, 660-667.	0.5	44
121	Effect of promotion with ruthenium on the structure and catalytic performance of mesoporous silica (smaller and larger pore) supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 2009, 140, 135-141.	4.4	57
122	Intergranular and intragranular cobalt repartitions in alumina supported Fischer–Tropsch catalysts promoted with platinum. Comptes Rendus Chimie, 2009, 12, 668-676.	0.5	5
123	The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction. Journal of Materials Chemistry, 2009, 19, 9241.	6.7	88
124	Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catalysis Today, 2009, 144, 251-257.	4.4	239
125	Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 2008, 142, 67-74.	14.7	75
126	Glowâ€Ðischarge Plasmaâ€Assisted Design of Cobalt Catalysts for Fischer–Tropsch Synthesis. Angewandte Chemie - International Edition, 2008, 47, 5052-5055.	13.8	149

#	Article	IF	CITATIONS
127	The influence of the temperature of calcining on Co particle-size distribution in the Co/Al2O3 catalyst for the Fischer-Tropsch synthesis. Russian Journal of Physical Chemistry A, 2008, 82, 951-955.	0.6	8
128	SANS study of the mechanisms and kinetics of the synthesis of mesoporous materials from micelles of tri-block copolymers. Studies in Surface Science and Catalysis, 2008, , 805-810.	1.5	6
129	New insights into the initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation. Chemical Communications, 2007, , 834-836.	4.1	39
130	Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer–Tropsch catalysts. Journal of Catalysis, 2007, 248, 143-157.	6.2	178
131	Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. Journal of Catalysis, 2007, 252, 215-230.	6.2	262
132	Advances in the Development of Novel Cobalt Fischerâ^'Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 2007, 107, 1692-1744.	47.7	2,045
133	Kinetic study and modeling of Fischer–Tropsch reaction over aCo/Al2O3catalyst in a slurry reactor. Chemical Engineering Science, 2007, 62, 5353-5356.	3.8	23
134	In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using Foner magnetic method. Applied Catalysis A: General, 2006, 306, 108-119.	4.3	86
135	The influence of Ru and Re admixtures on the size of Co particles in Co/SiO2 catalysts of the fischer-tropsch synthesis. Russian Journal of Physical Chemistry A, 2006, 80, 732-737.	0.6	1
136	Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials. Microporous and Mesoporous Materials, 2005, 79, 29-39.	4.4	114
137	Influence of syngas composition on the transient behavior of a Fischer–Tropsch continuous slurry reactor. Catalysis Today, 2005, 106, 137-142.	4.4	31
138	Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer?Tropsch catalysts. Journal of Catalysis, 2005, 230, 339-352.	6.2	173
139	Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer–Tropsch catalysts. Catalysis Today, 2005, 106, 161-165.	4.4	58
140	Transient studies of the elementary steps of Fischer–Tropsch synthesis. Catalysis Today, 2005, 106, 132-136.	4.4	12
141	Chemisorption of C3 hydrocarbons on cobalt silica supported Fischer?Tropsch catalysts. Catalysis Letters, 2005, 101, 117-126.	2.6	22
142	A new experimental cell forin situandoperandoX-ray absorption measurements in heterogeneous catalysis. Journal of Synchrotron Radiation, 2005, 12, 680-684.	2.4	23
143	Characterization of the Initial Stages of SBA-15 Synthesis by in Situ Time-Resolved Small-Angle X-ray Scattering. Journal of Physical Chemistry B, 2005, 109, 22780-22790.	2.6	87
144	Synthesis of Mo–W carbide via propane carburization of the precursor sulfide: Kinetic analysis. Journal of Chemical Technology and Biotechnology, 2004, 79, 286-290.	3.2	6

#	Article	IF	CITATIONS
145	Physicochemical attributes of oxide supported Mo2N catalysts synthesised via sulphide nitridation. Journal of Molecular Catalysis A, 2004, 211, 191-197.	4.8	4
146	Genesis of active sites in silica supported cobalt Fischer-Tropsch catalysts: effect of cobalt precursor and support texture. Studies in Surface Science and Catalysis, 2004, 147, 295-300.	1.5	20
147	Synchrotron X-ray diffraction–diffusion studies of the preparation of SBA-15 materials. Microporous and Mesoporous Materials, 2003, 66, 297-302.	4.4	29
148	Fischer–Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Applied Catalysis A: General, 2003, 254, 273-288.	4.3	218
149	Synthesis of bimetallic Mo–W carbide from its sulphide precursor via propane carburization: statistical correlation of the physicochemical properties with preparation conditions. Catalysis Communications, 2003, 4, 353-359.	3.3	5
150	Support mesoporosity: a tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts. Studies in Surface Science and Catalysis, 2002, 144, 609-616.	1.5	56
151	Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 2002, 206, 230-241.	6.2	462
152	Pore-Size Control of Cobalt Dispersion and Reducibility in Mesoporous Silicas. Journal of Physical Chemistry B, 2001, 105, 9805-9811.	2.6	194
153	Effects of Support Composition and Pretreatment Conditions on the Structure of Vanadia Dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. Journal of Physical Chemistry B, 2000, 104, 1516-1528.	2.6	180
154	Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques. Oil and Gas Science and Technology, 1999, 54, 525-536.	1.4	12
155	Structure and Catalytic Properties of Supported Vanadium Oxides: Support Effects on Oxidative Dehydrogenation Reactions. Journal of Catalysis, 1999, 181, 205-216.	6.2	573
156	Isotopic Tracer and Kinetic Studies of Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. Journal of Catalysis, 1999, 186, 325-333.	6.2	295
157	Ab initio study of single and double point adsorption of carbon monoxide on clusters representing zeolites. Physical Chemistry Chemical Physics, 1999, 1, 507-512.	2.8	4
158	Vanadyltert-Butoxy Orthosilicate, OV[OSi(OtBu)3]3:Â A Model for Isolated Vanadyl Sites on Silica and a Precursor to Vanadiaâ^'Silica Xerogelsâ€. Chemistry of Materials, 1999, 11, 2966-2973.	6.7	79
159	Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation. Journal of Catalysis, 1998, 177, 343-351.	6.2	267
160	Carbon dioxide adsorption kinetics in the presence of light paraffins on NaA and CaA zeolites. Studies in Surface Science and Catalysis, 1997, 105, 1715-1722.	1.5	0
161	Investigation of Dispersion and Localization of Platinum Species in Mazzite Using EXAFS. Journal of Physical Chemistry B, 1997, 101, 766-770.	2.6	15
162	Reducibility of Cobalt Species in Silica-Supported Fischer–Tropsch Catalysts. Journal of Catalysis, 1997, 168, 16-25.	6.2	310

#	Article	IF	CITATIONS
163	Broensted acidity in zeolites. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1673-1678.	0.4	2
164	Effect of propane on the kinetics of carbon dioxide adsorption in NaA zeolites. Separation and Purification Technology, 1995, 9, 253-257.	0.3	8
165	Effect of Pt particle size on H/D exchange of methane over alumina- and zeolite-supported catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 569.	1.7	11
166	IR spectroscopic study of acid sites in mordenites fluorinated under mild conditions. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 385.	1.7	5
167	Deuteration of methane as a test reaction on Pt dispersion in mazzite zeolites and alumina based isomerization catalysts. Studies in Surface Science and Catalysis, 1994, 84, 781-788.	1.5	0
168	Infrared spectroscopic study of the interaction of cations in zeolites with simple molecular probes. Part 3.—Adsorption and polarization of methane and ethane on cationic forms of high-silica zeolites. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1393-1395.	1.7	44
169	Infrared spectroscopic study of the interactions of cations in zeolites with simple molecular probes. Part 2.—Adsorption and polarization of molecular hydrogen on zeolites containing polyvalent cations. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3251-3253.	1.7	26
170	Localization of polyvalent cations in pentasil catalysts modified by metal oxides. Zeolites, 1992, 12, 866-869.	0.5	21
171	Modified heterosilicates (Fe, B)-catalytic characteristics and IR spectra. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1004-1010.	0.0	0
172	IR study of the active sites formed by H2 treatment of Ga/HZSM-5 catalysts. Journal of Molecular Catalysis, 1991, 70, 111-117.	1.2	47
173	Investigation of the different states of gallium in crystalline gallosilicates with pentasil structure and their role in propane aromatization. Zeolites, 1990, 10, 603-607.	0.5	74
174	Surface modification of metallic catalysts for the design of selective processes. Catalysis Reviews - Science and Engineering, 0, , 1-47.	12.9	6