Claire Mc Pouget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9382993/publications.pdf

Version: 2024-02-01

17	1,180	15	18
papers	citations	h-index	g-index
20	20	20	1489
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development (Cambridge), 2006, 133, 1013-1022.	2.5	147
2	Hedgehog and Bmp Polarize Hematopoietic Stem Cell Emergence in the Zebrafish Dorsal Aorta. Developmental Cell, 2009, 16, 909-916.	7.0	126
3	Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature, 2014, 512, 319-323.	27.8	126
4	Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development (Cambridge), 2015, 142, 1050-1061.	2.5	117
5	From hemangioblast to hematopoietic stem cell: An endothelial connection?. Experimental Hematology, 2005, 33, 1029-1040.	0.4	108
6	The gata $1/\text{pu}.1$ lineage fate paradigm varies between blood populations and is modulated by tif $1\hat{l}^3$. EMBO Journal, 2011, 30, 1093-1103.	7.8	81
7	Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Developmental Biology, 2008, 315, 437-447.	2.0	74
8	Complex regulation of HSC emergence by the Notch signaling pathway. Developmental Biology, 2016, 409, 129-138.	2.0	64
9	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	11.1	63
10	Are Intra-Aortic Hemopoietic Cells Derived from Endothelial Cells During Ontogeny?. Trends in Cardiovascular Medicine, 2006, 16, 128-139.	4.9	52
11	Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Reports, 2016, 17, 1595-1606.	6.4	46
12	FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway. Nature Communications, 2014, 5, 5588.	12.8	45
13	The embryonic origins of hematopoietic stem cells: a tale of hemangioblast and hemogenic endothelium. Apmis, 2005, 113, 790-803.	2.0	44
14	FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nature Communications, 2014, 5, 5583.	12.8	37
15	Expression of Notch genes and their ligands during gastrulation in the chicken embryo. Mechanisms of Development, 2002, 116, 161-164.	1.7	21
16	Aortic remodelling during hemogenesis: is the chicken paradigm unique?. International Journal of Developmental Biology, 2010, 54, 1045-1054.	0.6	14
17	Zebrafish snai2 mutants fail to phenocopy morphant phenotypes. PLoS ONE, 2018, 13, e0202747.	2.5	4