Christoph Kuppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9382689/publications.pdf

Version: 2024-02-01

331670 315739 2,175 44 21 38 citations h-index g-index papers 51 51 51 3154 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrology Dialysis Transplantation, 2022, 37, 628-637.	0.7	6
2	Deficiency of myeloid PHD proteins aggravates atherogenesis via macrophage apoptosis and paracrine fibrotic signalling. Cardiovascular Research, 2022, 118, 1232-1246.	3.8	12
3	Altered vitamin K biodistribution and metabolism in experimental and human chronic kidney disease. Kidney International, 2022, 101, 338-348.	5.2	21
4	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	11.1	146
5	Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development (Cambridge), 2022, 149, .	2.5	16
6	Mapping the cardiac vascular niche in heart failure. Nature Communications, 2022, 13, .	12.8	31
7	Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell, 2021, 28, 637-652.e8.	11.1	92
8	Deep Learning-Based Bias Transfer for Overcoming Laboratory Differences of Microscopic Images. Lecture Notes in Computer Science, 2021, , 322-336.	1.3	1
9	Deep learning–based molecular morphometrics for kidney biopsies. JCI Insight, 2021, 6, .	5.0	31
10	MO442ACUTE ADVERSE EFFECTS OF LOW POTASSIUM ON HEART AND KIDNEY*. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
11	Causal integration of multiâ€omics data with prior knowledge to generate mechanistic hypotheses. Molecular Systems Biology, 2021, 17, e9730.	7.2	78
12	Decoding myofibroblast origins in human kidney fibrosis. Nature, 2021, 589, 281-286.	27.8	380
13	Prevention of vascular calcification by the endogenous chromogranin A-derived mediator that inhibits osteogenic transdifferentiation. Basic Research in Cardiology, 2021, 116, 57.	5.9	3
14	Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nature Communications, 2021, 12, 6386.	12.8	57
15	A Functional Landscape of CKD Entities From Public Transcriptomic Data. Kidney International Reports, 2020, 5, 211-224.	0.8	14
16	Only Hyperuricemia with Crystalluria, but not Asymptomatic Hyperuricemia, Drives Progression of Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2773-2792.	6.1	66
17	Heterogeneity and plasticity in healthy and atherosclerotic vasculature explored by single-cell sequencing. Cardiovascular Research, 2019, 115, 1705-1715.	3.8	36
18	The authors reply. Kidney International, 2019, 96, 1241.	5.2	1

#	Article	IF	CITATIONS
19	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	5.2	35
20	Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis. Scientific Reports, 2019, 9, 4596.	3.3	20
21	Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions. Kidney International, 2019, 96, 80-93.	5.2	50
22	Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney International, 2019, 95, 1103-1119.	5.2	14
23	mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight, 2019, 4, .	5.0	69
24	Transcriptional Landscape of the Microenvironment in Bone Marrow Fibrosis at Single Cell Level. Blood, 2019, 134, 1675-1675.	1.4	2
25	Inverse correlation between vascular endothelial growth factor back-filtration and capillary filtration pressures. Nephrology Dialysis Transplantation, 2018, 33, 1514-1525.	0.7	7
26	Investigations of Glucocorticoid Action in GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 1408-1420.	6.1	46
27	Role of mesenchymal stem cells in kidney injury and fibrosis. Current Opinion in Nephrology and Hypertension, 2016, 25, 372-377.	2.0	32
28	The Authors Reply. Kidney International, 2016, 89, 1404.	5.2	0
29	Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell, 2016, 19, 628-642.	11.1	254
30	Focal segmental glomerulosclerosis: it may no longer be all about podocytes. Kidney International, 2016, 90, 905.	5.2	0
31	Progress and controversies in unraveling the glomerular filtration mechanism. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	2.0	10
32	SP096COMMON PATTERNS OF GLOMERULAR EPITHELIAL CELLS IN HUMAN SECONDARY FSGS LESIONS. Nephrology Dialysis Transplantation, 2015, 30, iii410-iii410.	0.7	0
33	Point: Proposing the Electrokinetic Model. Peritoneal Dialysis International, 2015, 35, 5-8.	2.3	10
34	Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis. Kidney International, 2015, 88, 990-998.	5.2	57
35	SPO48UNRAVELING THE MECHANISM OF ACTION OF GLUCOCORTICOIDS IN GLOMERULONEPHRITIS. Nephrology Dialysis Transplantation, 2015, 30, iii396-iii396.	0.7	0
36	Renal Lipidosis in Patients Enrolled in a Methadone Substitution Program. Archives of Pathology and Laboratory Medicine, 2014, 138, 689-693.	2.5	16

3

#	Article	IF	CITATIONS
37	The Regenerative Potential of Parietal Epithelial Cells in Adult Mice. Journal of the American Society of Nephrology: JASN, 2014, 25, 693-705.	6.1	96
38	The role of parietal epithelial cells in hyperplastic lesions. Nature Reviews Nephrology, 2014, 10, 5-6.	9.6	5
39	Bioengineered kidneys: new sights on a distant horizon. International Urology and Nephrology, 2014, 46, 477-480.	1.4	1
40	Macrophage activation syndrome in a patient with pulmonary inflammatory myofibroblastic tumour. Allergy, Asthma and Clinical Immunology, 2012, 8, 6.	2.0	3
41	Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology, 2012, 55, 1610-1619.	7.3	110
42	Primary Cultures of Glomerular Parietal Epithelial Cells or Podocytes with Proven Origin. PLoS ONE, 2012, 7, e34907.	2.5	55
43	Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1262-1274.	6.1	186
44	Electrical Forces Determine Glomerular Permeability. Journal of the American Society of Nephrology: JASN, 2010, 21, 2053-2058.	6.1	61