Hiroshi Masumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introduction of a long synthetic repetitive DNA sequence into cultured tobacco cells. Plant Biotechnology, 2022, 39, 101-110.	1.0	2
2	Combination of CENP-B Box Positive and Negative Synthetic Alpha Satellite Repeats Improves De Novo Human Artificial Chromosome Formation. Cells, 2022, 11, 1378.	4.1	3
3	Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget, 2021, 12, 1444-1456.	1.8	2
4	CENP-B creates alternative epigenetic chromatin states permissive for CENP-A or heterochromatin assembly. Journal of Cell Science, 2020, 133, .	2.0	32
5	An Artificial Conversion of Roots into Organs with Shoot Stem Characteristics by Inducing Two Transcription Factors. IScience, 2020, 23, 101332.	4.1	3
6	Artificial chromosomes. Experimental Cell Research, 2020, 396, 112302.	2.6	1
7	Analysis of Complex DNA Rearrangements during Early Stages of HAC Formation. ACS Synthetic Biology, 2020, 9, 3267-3287.	3.8	6
8	H3K9me3 maintenance on a Human Artificial Chromosome is required for segregation but not centromere epigenetic memory. Journal of Cell Science, 2020, 133, .	2.0	15
9	Human artificial chromosome: Chromatin assembly mechanisms and CENP-B. Experimental Cell Research, 2020, 389, 111900.	2.6	10
10	A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Research, 2019, 29, 1719-1732.	5.5	16
11	De novo formation and epigenetic maintenance of centromere chromatin. Current Opinion in Cell Biology, 2019, 58, 15-25.	5.4	21
12	Generation of a Synthetic Human Chromosome with Two Centromeric Domains for Advanced Epigenetic Engineering Studies. ACS Synthetic Biology, 2018, 7, 1116-1130.	3.8	16
13	Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synthetic Biology, 2018, 7, 63-74.	3.8	18
14	Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Research, 2018, 78, 6282-6296.	0.9	20
15	Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synthetic Biology, 2018, 7, 1974-1989.	3.8	26
16	Using human artificial chromosomes to study centromere assembly and function. Chromosoma, 2017, 126, 559-575.	2.2	20
17	CENP-B box, a nucleotide motif involved in centromere formation, occurs in a New World monkey. Biology Letters, 2016, 12, 20150817.	2.3	18
18	KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Developmental Cell, 2016, 37, 413-427.	7.0	78

Нігозні Маѕимото

#	Article	IF	CITATIONS
19	Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nature Communications, 2016, 7, 13334.	12.8	71
20	Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys. Scientific Reports, 2016, 6, 27833.	3.3	15
21	Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Molecular Biology of the Cell, 2016, 27, 177-196.	2.1	30
22	CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. Journal of Cell Science, 2015, 128, 4572-87.	2.0	58
23	Genetic and epigenetic regulation of centromeres: a look at HAC formation. Chromosome Research, 2015, 23, 87-103.	2.2	26
24	Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette. Nucleic Acids Research, 2015, 43, e57-e57.	14.5	17
25	Generating a transgenic mouse line stably expressing human MHC surface antigen from a HAC carrying multiple genomic BACs. Chromosoma, 2015, 124, 107-118.	2.2	16
26	Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Research, 2015, 43, 4909-4922.	14.5	59
27	A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. Nucleic Acids Research, 2014, 42, e164-e164.	14.5	32
28	Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Research, 2014, 42, 11502-11516.	14.5	42
29	Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cellular and Molecular Life Sciences, 2013, 70, 3723-3737.	5.4	23
30	A new generation of human artificial chromosomes for functional genomics and gene therapy. Cellular and Molecular Life Sciences, 2013, 70, 1135-1148.	5.4	63
31	Nap1 regulates proper CENP-B binding to nucleosomes. Nucleic Acids Research, 2013, 41, 2869-2880.	14.5	19
32	Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO Journal, 2012, 31, 2391-2402.	7.8	151
33	Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. Journal of Cell Science, 2012, 125, 411-421.	2.0	97
34	Organization of Synthetic Alphoid DNA Array in Human Artificial Chromosome (HAC) with a Conditional Centromere. ACS Synthetic Biology, 2012, 1, 590-601.	3.8	48
35	HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Research, 2012, 20, 505-519.	2.2	40
36	Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO Journal, 2011, 30, 328-340.	7.8	264

Нігозні Маѕимото

#	Article	IF	CITATIONS
37	Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20048-20053.	7.1	67
38	Human Artificial Chromosome with a Conditional Centromere for Gene Delivery and Gene Expression. DNA Research, 2010, 17, 293-301.	3.4	59
39	Hierarchical Inactivation of a Synthetic Human Kinetochore by a Chromatin Modifier. Molecular Biology of the Cell, 2009, 20, 4194-4204.	2.1	75
40	Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Research, 2009, 19, 533-544.	5.5	67
41	Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers. Developmental Cell, 2008, 14, 507-522.	7.0	239
42	CENP-B Controls Centromere Formation Depending on the Chromatin Context. Cell, 2007, 131, 1287-1300.	28.9	208
43	A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO Journal, 2007, 26, 1279-1291.	7.8	74
44	An Artificially Constructed De Novo Human Chromosome Behaves Almost Identically to Its Natural Counterpart during Metaphase and Anaphase in Living Cells. Molecular and Cellular Biology, 2006, 26, 7682-7695.	2.3	18
45	Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Research, 2005, 33, e130-e130.	14.5	47
46	Human Centromere Protein B Induces Translational Positioning of Nucleosomes on α-Satellite Sequences. Journal of Biological Chemistry, 2005, 280, 41609-41618.	3.4	53
47	Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. Journal of Cell Science, 2005, 118, 5885-5898.	2.0	39
48	CENP-B Interacts with CENP-C Domains Containing Mif2 Regions Responsible for Centromere Localization. Journal of Biological Chemistry, 2004, 279, 5934-5946.	3.4	54
49	The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Research, 2004, 12, 543-556.	2.2	80
50	Epigenetic assembly of centromeric chromatin at ectopic α-satellite sites on human chromosomes. Journal of Cell Science, 2003, 116, 4021-4034.	2.0	60
51	CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. Journal of Cell Biology, 2002, 159, 765-775.	5.2	266
52	Construction of YAC–based mammalian artificial chromosomes. Nature Biotechnology, 1998, 16, 431-439.	17.5	399
53	Assay of centromere function using a human artificial chromosome. Chromosoma, 1998, 107, 406-416.	2.2	71
54	Prediction of the Three Dimensional Structure of the DBD of Centromere Protein B (CENP-B) in Comparison with the Structures of Myb, LexA and DtxR DBDs Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 153-157.	3.8	4

#	Article	IF	CITATIONS
55	Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21. Human Molecular Genetics, 1994, 3, 1245-1257.	2.9	146