Walter Richtering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9380237/publications.pdf

Version: 2024-02-01

324 papers 17,083 citations

68 h-index 22832 112 g-index

343 all docs 343 docs citations

343 times ranked 11443 citing authors

#	Article	IF	CITATIONS
1	Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. Journal of Chemical Physics, 1999, 111, 1705-1711.	3.0	602
2	Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Advanced Healthcare Materials, 2016, 5, 326-333.	7.6	571
3	Functional Microgels and Microgel Systems. Accounts of Chemical Research, 2017, 50, 131-140.	15.6	537
4	Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. Journal of Chemical Physics, 2004, 120, 6197-6206.	3.0	501
5	Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir, 2019, 35, 6231-6255.	3.5	395
6	Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid and Polymer Science, 2000, 278, 830-840.	2.1	317
7	Nanoparticle-Based Test Measures Overall Propensity for Calcification in Serum. Journal of the American Society of Nephrology: JASN, 2012, 23, 1744-1752.	6.1	275
8	Are Thermoresponsive Microgels Model Systems for Concentrated Colloidal Suspensions? A Rheology and Small-Angle Neutron Scattering Study. Langmuir, 2004, 20, 7283-7292.	3.5	247
9	Responsive Emulsions Stabilized by Stimuli-Sensitive Microgels: Emulsions with Special Non-Pickering Properties. Langmuir, 2012, 28, 17218-17229.	3.5	247
10	Doubly Temperature Sensitive Coreâ^'Shell Microgels. Macromolecules, 2003, 36, 8780-8785.	4.8	229
11	Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhysics Letters, 2008, 83, 46001.	2.0	229
12	Hierarchical Role of Fetuin-A and Acidic Serum Proteins in the Formation and Stabilization of Calcium Phosphate Particles. Journal of Biological Chemistry, 2008, 283, 14815-14825.	3.4	194
13	Microgels as Stimuli-Responsive Stabilizers for Emulsions. Langmuir, 2008, 24, 12202-12208.	3.5	182
14	Magnetic, Thermosensitive Microgels as Stimuliâ€Responsive Emulsifiers Allowing for Remote Control of Separability and Stability of Oil in Waterâ€Emulsions. Advanced Materials, 2007, 19, 2973-2978.	21.0	181
15	Unraveling the 3D Localization and Deformation of Responsive Microgels at Oil/Water Interfaces: A Step Forward in Understanding Soft Emulsion Stabilizers. Langmuir, 2012, 28, 15770-15776.	3.5	178
16	Structure of Multiresponsive "Intelligent―Coreâ^'Shell Microgels. Journal of the American Chemical Society, 2005, 127, 9372-9373.	13.7	174
17	Microgelâ€Stabilized Smart Emulsions for Biocatalysis. Angewandte Chemie - International Edition, 2013, 52, 576-579.	13.8	173
18	Rheology of a Temperature Sensitive Coreâ^'Shell Latex. Langmuir, 1999, 15, 102-106.	3.5	162

#	Article	IF	CITATIONS
19	Temperature-Sensitive Core–Shell Microgel Particles with Dense Shell. Angewandte Chemie - International Edition, 2006, 45, 1737-1741.	13.8	155
20	Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization. Advances in Polymer Science, 2010, , 1-37.	0.8	150
21	Emulsions Stabilized by Stimuli-Sensitive Poly(<i>N</i> -isopropylacrylamide)- <i>co</i> -Methacrylic Acid Polymers: Microgels versus Low Molecular Weight Polymers. Langmuir, 2008, 24, 7769-7777.	3.5	147
22	Influence of Microgel Architecture and Oil Polarity on Stabilization of Emulsions by Stimuli-Sensitive Core–Shell Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) Microgels: Mickering versus Pickering Behavior?. Langmuir, 2011, 27, 9801-9806.	3.5	145
23	Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: Magnetic and thermoresponsive. Journal of Colloid and Interface Science, 2008, 324, 47-54.	9.4	127
24	Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Current Opinion in Colloid and Interface Science, 2014, 19, 84-94.	7.4	125
25	Adsorption of microgels at an oil–water interface: correlation between packing and 2D elasticity. Soft Matter, 2014, 10, 6963-6974.	2.7	123
26	Influence of Shell Thickness and Cross-Link Density on the Structure of Temperature-Sensitive Poly-N-Isopropylacrylamideâ°'Poly-N-Isopropylmethacrylamide Coreâ°'Shell Microgels Investigated by Small-Angle Neutron Scattering. Langmuir, 2006, 22, 459-468.	3.5	122
27	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 911-925.	1.1	121
28	Shear-Induced Formation of Multilamellar Vesicles ("Onionsâ€) in Block Copolymers. Langmuir, 1999, 15, 2599-2602.	3.5	114
29	Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter, 2012, 8, 4877.	2.7	114
30	Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms. Physical Chemistry Chemical Physics, 2010, 12, 14573.	2.8	111
31	Dual-Stimuli-Sensitive Microgels as a Tool for Stimulated Spongelike Adsorption of Biomaterials for Biosensor Applications. Biomacromolecules, 2014, 15, 3735-3745.	5.4	110
32	Mechanics versus Thermodynamics: Swelling in Multiple-Temperature-Sensitive Core–Shell Microgels. Angewandte Chemie - International Edition, 2006, 45, 1081-1085.	13.8	103
33	Non-coalescence of oppositely charged droplets in pH-sensitive emulsions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 384-389.	7.1	103
34	Temperature Sensitive Copolymer Microgels with Nanophase Separated Structure. Journal of the American Chemical Society, 2009, 131, 3093-3097.	13.7	100
35	Polyampholyte Microgels with Anionic Core and Cationic Shell. Macromolecules, 2010, 43, 4331-4339.	4.8	100
36	Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating. Nano Letters, 2016, 16, 157-163.	9.1	98

#	Article	IF	Citations
37	The Colloidal Suprastructure of Smart Microgels at Oil–Water Interfaces. Angewandte Chemie - International Edition, 2009, 48, 3978-3981.	13.8	97
38	Gel architectures and their complexity. Soft Matter, 2014, 10, 3695-3702.	2.7	97
39	Isostructural solid–solid phase transition in monolayers of soft core–shell particles at fluid interfaces: structure and mechanics. Soft Matter, 2016, 12, 3545-3557.	2.7	97
40	Influence of Polymerization Conditions on the Structure of Temperature-Sensitive Poly(N-isopropylacrylamide) Microgels. Macromolecules, 2005, 38, 1517-1519.	4.8	96
41	Hollow and Core–Shell Microgels at Oil–Water Interfaces: Spreading of Soft Particles Reduces the Compressibility of the Monolayer. Langmuir, 2015, 31, 13145-13154.	3.5	93
42	Poly(N-isopropylacrylamide) microgels at the oil–water interface: adsorption kinetics. Soft Matter, 2013, 9, 9939.	2.7	92
43	Cononsolvency of Poly(<i>N</i> , <i>N</i> -diethylacrylamide) (PDEAAM) and Poly(<i>N</i> -isopropylacrylamide) (PNIPAM) Based Microgels in Water/Methanol Mixtures: Copolymer vs Coreâ^'Shell Microgel. Macromolecules, 2010, 43, 6829-6833.	4.8	91
44	Interplay between Hydrogen Bonding and Macromolecular Architecture Leading to Unusual Phase Behavior in Thermosensitive Microgels. Angewandte Chemie - International Edition, 2008, 47, 338-341.	13.8	90
45	Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Thermoresponsive P(NiPAM- <i>co</i> Microgel: Effect of Ionic Strength and Molecular Weight. Macromolecules, 2009, 42, 1229-1238.	4.8	90
46	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	9.1	90
47	Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition. Science Advances, 2018, 4, eaao7086.	10.3	90
48	Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions. Nature Communications, 2019, 10, 1418.	12.8	90
49	Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Scientific Reports, 2016, 6, 22736.	3.3	89
50	Electrostatic Interactions and Osmotic Pressure of Counterions Control the pH-Dependent Swelling and Collapse of Polyampholyte Microgels with Random Distribution of Ionizable Groups. Macromolecules, 2015, 48, 5914-5927.	4.8	88
51	Structural Ordering and Phase Behavior of Charged Microgels. Journal of Physical Chemistry B, 2008, 112, 14692-14697.	2.6	87
52	Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1100-1111.	2.1	87
53	Hydrodynamic and Colloidal Interactions in Concentrated Charge-Stabilized Polymer Dispersions. Journal of Colloid and Interface Science, 2000, 225, 166-178.	9.4	86
54	Rheology and shear induced structures in surfactant solutions. Current Opinion in Colloid and Interface Science, 2001, 6, 446-450.	7.4	86

#	Article	IF	CITATIONS
55	Shape-Selective Synthesis of Palladium Nanoparticles Stabilized by Highly Branched Amphiphilic Polymers. Advanced Functional Materials, 2004, 14, 999-1004.	14.9	81
56	Thermodynamic and hydrodynamic interaction in concentrated microgel suspensions: Hard or soft sphere behavior?. Journal of Chemical Physics, 2008, 129, 124902.	3.0	81
57	Does Floryâ€"Rehner theory quantitatively describe the swelling of thermoresponsive microgels?. Soft Matter, 2017, 13, 8271-8280.	2.7	80
58	Pathway of the Shear-Induced Transition between Planar Lamellae and Multilamellar Vesicles as Studied by Time-Resolved Scattering Techniques. Langmuir, 2003, 19, 3603-3618.	3. 5	79
59	Influence of Shear on Lyotropic Lamellar Phases with Different Membrane Defects. Journal of Physical Chemistry B, 1999, 103, 2841-2849.	2.6	78
60	Influence of Architecture on the Interaction of Negatively Charged Multisensitive $Poly(N-isopropylacrylamide)-co-Methacrylic Acid Microgels with Oppositely Charged Polyelectrolyte: Absorption vs Adsorption. Langmuir, 2010, 26, 11258-11265.$	3. 5	78
61	The Compressibility of pHâ€Sensitive Microgels at the Oil–Water Interface: Higher Charge Leads to Less Repulsion. Angewandte Chemie - International Edition, 2014, 53, 4905-4909.	13.8	78
62	Nonionic Amphiphilic Bilayer Structures under Shear. Langmuir, 2001, 17, 999-1008.	3. 5	76
63	Cononsolvency Revisited: Solvent Entrapment by $\langle i > N < /i > -l$ sopropylacrylamide and $\langle i > N < /i > -l$ i>-Diethylacrylamide Microgels in Different Water/Methanol Mixtures. Macromolecules, 2013, 46, 523-532.	4.8	73
64	Shear induced structures in lamellar phases of amphiphilic block copolymers. Physical Chemistry Chemical Physics, 1999, 1, 3905-3910.	2.8	72
65	Cylindrical intermediates in a shear-induced lamellar-to-vesicle transition. Europhysics Letters, 2001, 53, 335-341.	2.0	72
66	Nanoscopic Visualization of Crossâ€Linking Density in Polymer Networks with Diarylethene Photoswitches. Angewandte Chemie - International Edition, 2018, 57, 12280-12284.	13.8	72
67	Layer-by-layer assembly of a magnetic nanoparticle shell on a thermoresponsive microgel core. Journal of Magnetism and Magnetic Materials, 2007, 311, 219-223.	2.3	70
68	Shear-induced orientations in a lyotropic defective lamellar phase. Europhysics Letters, 1998, 43, 683-689.	2.0	69
69	Magnetic Capsules and Pickering Emulsions Stabilized by Coreâ^'Shell Particles. Langmuir, 2009, 25, 7335-7341.	3.5	69
70	The special behaviours of responsive core–shell nanogels. Soft Matter, 2012, 8, 11423.	2.7	69
71	Layer-by-layer assembly on stimuli-responsive microgels. Current Opinion in Colloid and Interface Science, 2008, 13, 403-412.	7.4	68

Hyperbranched Polymers:Â Structure of Hyperbranched Polyglycerol and Amphiphilic Poly(glycerol) Tj ETQq0 0 0 rgAT/Overlock 10 Tf 50

#	Article	IF	Citations
73	Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid and Polymer Science, 2006, 285, 471-474.	2.1	67
74	Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure. Soft Matter, 2016, 12, 3919-3928.	2.7	67
75	Light scattering from aqueous solutions of a nonionic surfactant (C14E8) in a wide concentration range. The Journal of Physical Chemistry, 1988, 92, 6032-6040.	2.9	66
76	Dynamic light scattering from polymer solutions. , 1989, , 151-163.		66
77	Shear-Induced Phase Separation in Aqueous Polymer Solutions:Â Temperature-Sensitive Microgels and Linear Polymer Chains. Macromolecules, 2003, 36, 8811-8818.	4.8	66
78	The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3. Journal of Cell Science, 2011, 124, 900-909.	2.0	66
79	Highly ordered 2D microgel arrays: compression versus self-assembly. Soft Matter, 2014, 10, 7968-7976.	2.7	66
80	Coreâ€"Shellâ€"Shell and Hollow Doubleâ€Shell Microgels with Advanced Temperature Responsiveness. Macromolecular Rapid Communications, 2015, 36, 159-164.	3.9	66
81	Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography. Physical Chemistry Chemical Physics, 2017, 19, 8671-8680.	2.8	66
82	Gel point in physical gels: rheology and light scattering from thermoreversibly gelling schizophyllan. Polymer Gels and Networks, 1998, 5, 541-559.	0.6	64
83	Shear Orientation of a Hexagonal Lyotropic Triblock Copolymer Phase As Probed by Flow Birefringence and Small-Angle Light and Neutron Scattering. Macromolecules, 1998, 31, 2293-2298.	4.8	64
84	Copolymer Microgels from Mono- and Disubstituted Acrylamides: Phase Behavior and Hydrogen Bonds. Macromolecules, 2008, 41, 6830-6836.	4.8	63
85	Shear Orientation of Lyotropic Hexagonal Phases. Journal of Physical Chemistry B, 1998, 102, 507-513.	2.6	62
86	Structureâ^Property Relationship in Stimulus-Responsive Bolaamphiphile Hydrogels. Langmuir, 2007, 23, 7715-7723.	3.5	61
87	From Batch to Continuous Precipitation Polymerization of Thermoresponsive Microgels. ACS Applied Materials & Discrete Services, 2018, 10, 24799-24806.	8.0	61
88	Influence of Water-Soluble Polymers on the Shear-Induced Structure Formation in Lyotropic Lamellar Phases. Journal of Physical Chemistry B, 2001, 105, 11081-11088.	2.6	60
89	Deswelling of Microgels in Crowded Suspensions Depends on Cross-Link Density and Architecture. Macromolecules, 2019, 52, 3995-4007.	4.8	60
90	Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. Small, 2020, 16, e2002162.	10.0	60

#	Article	IF	Citations
91	Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels. Macromolecules, 2018, 51, 2662-2671.	4.8	58
92	Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels—from soft to hard fillers. Soft Matter, 2012, 8, 4254.	2.7	57
93	How Hollow Are Thermoresponsive Hollow Nanogels?. Macromolecules, 2014, 47, 8700-8708.	4.8	56
94	Poly(N-isopropylacrylamide) microgels at the oil–water interface: temperature effect. Soft Matter, 2014, 10, 6182-6191.	2.7	56
95	Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles. Langmuir, 2015, 31, 6282-6288.	3.5	56
96	Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes. Journal of Applied Electrochemistry, 1998, 28, 1107-1112.	2.9	53
97	Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture. Physical Chemistry Chemical Physics, 2012, 14, 2762.	2.8	53
98	Mixing of Two Immiscible Liquids within the Polymer Microgel Adsorbed at Their Interface. ACS Macro Letters, 2016, 5, 612-616.	4.8	53
99	An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core–shell responsive microgels. Soft Matter, 2018, 14, 4287-4299.	2.7	52
100	Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Analytical Chemistry, 2017, 89, 6091-6098.	6.5	51
101	Behavior of Temperature-Responsive Copolymer Microgels at the Oil/Water Interface. Langmuir, 2014, 30, 7660-7669.	3.5	50
102	Rheo-small-Angle-Light-Scattering Investigation of Shear-Induced Structural Changes in a Lyotropic Lamellar Phase. Journal of Colloid and Interface Science, 1996, 181, 521-529.	9.4	48
103	Relationship between short-time self-diffusion and high-frequency viscosity in charge-stabilized dispersions. Physical Review E, 1998, 58, R4088-R4091.	2.1	48
104	Coreâ^'Shell-Structured Highly Branched Poly(ethylenimine amide)s:Â Synthesis and Structure. Macromolecules, 2005, 38, 5914-5920.	4.8	48
105	Spatially Resolved Tracer Diffusion in Complex Responsive Hydrogels. Journal of the American Chemical Society, 2012, 134, 15963-15969.	13.7	48
106	Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes. Macromolecular Rapid Communications, 2013, 34, 855-860.	3.9	48
107	How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chemical Reviews, 2022, 122, 11675-11700.	47.7	48
108	Effect of the 3D Swelling of Microgels on Their 2D Phase Behavior at the Liquid–Liquid Interface. Langmuir, 2019, 35, 16780-16792.	3.5	47

#	Article	IF	CITATIONS
109	Progress in thick-film pad printing technique for solar cells. Solar Energy Materials and Solar Cells, 2001, 65, 399-407.	6.2	46
110	Influence of Shear on Solvated Amphiphilic Block Copolymers with Lamellar Morphology. Macromolecules, 2002, 35, 4064-4074.	4.8	46
111	Hollow microgels squeezed in overcrowded environments. Journal of Chemical Physics, 2018, 148, 174903.	3.0	46
112	Rheology and Shear Orientation of a Nematic Liquid Crystalline Side-Group Polymer with Laterally Attached Mesogenic Units. Macromolecules, 1997, 30, 7574-7581.	4.8	45
113	Solution Structure of Metal Particles Prepared in Unimolecular Reactors of Amphiphilic Hyperbranched Macromolecules. Macromolecules, 2004, 37, 7893-7900.	4.8	45
114	Cononsolvency of mono- and di-alkyl N-substituted poly(acrylamide)s and poly(vinyl caprolactam). Polymer, 2015, 62, 50-59.	3.8	45
115	A model describing the internal structure of core/shell hydrogels. Soft Matter, 2011, 7, 10327.	2.7	44
116	Tunable 2D binary colloidal alloys for soft nanotemplating. Nanoscale, 2018, 10, 22189-22195.	5.6	44
117	Formation and stability kinetics of calcium phosphate–fetuin-A colloidal particles probed by time-resolved dynamic light scattering. Soft Matter, 2011, 7, 2869.	2.7	43
118	New Insight into Microgel-Stabilized Emulsions Using Transmission X-ray Microscopy: Nonuniform Deformation and Arrangement of Microgels at Liquid Interfaces. Langmuir, 2015, 31, 83-89.	3.5	43
119	Synthesis and structure of deuterated ultra-low cross-linked poly(<i>N</i> -isopropylacrylamide) microgels. Polymer Chemistry, 2019, 10, 2397-2405.	3.9	43
120	Electrochemical reactivity of ordered and disordered nâ€GaAs(110) surfaces. A combined XPS, LEED and electrochemical study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 412-416.	0.9	42
121	Comparison of the Effective Radius of Sterically Stabilized Latex Particles Determined by Small-Angle X-ray Scattering and by Zero Shear Viscosity. Langmuir, 1998, 14, 5083-5087.	3.5	42
122	Rheo-optical investigations of lyotropic mesophases of polymeric surfactants. Rheologica Acta, 1999, 38, 486-494.	2.4	42
123	Rearrangements in and Release from Responsive Microgelâ^Polyelectrolyte Complexes Induced by Temperature and Time. Journal of Physical Chemistry B, 2011, 115, 3804-3810.	2.6	42
124	Toward Copolymers with Ideal Thermosensitivity: Solution Properties of Linear, Well-Defined Polymers of <i>N</i> Ji>-Isopropyl Acrylamide and <i>N</i> Ji>-Oiethyl Acrylamide. Macromolecules, 2012, 45, 8021-8026.	4.8	42
125	Unperturbed Volume Transition of Thermosensitive Poly-(<i>N</i> li>-isopropylacrylamide) Microgel Particles Embedded in a Hydrogel Matrix. Journal of Physical Chemistry B, 2008, 112, 6309-6314.	2.6	41
126	Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes. Colloid and Polymer Science, 2011, 289, 739-749.	2.1	41

#	Article	IF	Citations
127	Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS- <i>b</i> -PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS. Macromolecules, 2014, 47, 6867-6879.	4.8	40
128	Cononsolvency Effects on the Structure and Dynamics of Microgels. Macromolecules, 2014, 47, 5982-5988.	4.8	40
129	Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide. Colloid and Polymer Science, 2014, 292, 1743-1756.	2.1	40
130	Polymers in focus: fluorescence correlation spectroscopy. Colloid and Polymer Science, 2014, 292, 2399-2411.	2.1	39
131	Engineering Systems with Spatially Separated Enzymes via Dual-Stimuli-Sensitive Properties of Microgels. Langmuir, 2015, 31, 13029-13039.	3.5	39
132	Amphiphilic Arborescent Copolymers and Microgels: From Unimolecular Micelles in a Selective Solvent to the Stable Monolayers of Variable Density and Nanostructure at a Liquid Interface. ACS Applied Materials & Density and Nanostructure at a Liquid Interface. ACS Applied Materials & Density and Nanostructure at a Liquid Interface.	8.0	39
133	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, 2280-2287.	13.8	39
134	Reversible size of shear-induced multi-lamellar vesicles. Colloid and Polymer Science, 2005, 284, 317-321.	2.1	38
135	Size and viscoelasticity of spatially confined multilamellar vesicles. European Physical Journal E, 2006, 19, 139-148.	1.6	38
136	Magnetic Nanoparticles Encapsulated Within a Thermoresponsive Polymer. Journal of Nanoscience and Nanotechnology, 2009, 9, 5355-5361.	0.9	38
137	Distribution of Ionizable Groups in Polyampholyte Microgels Controls Interactions with Captured Proteins: From Blockade and "Levitation―to Accelerated Release. Biomacromolecules, 2019, 20, 1578-1591.	5.4	38
138	Shear Orientation of a Micellar Hexagonal Liquid Crystalline Phase: A Rheo and Small Angle Light Scattering Study. Langmuir, 1994, 10, 4374-4379.	3.5	37
139	Defined Complexes of Negatively Charged Multisensitive Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) Microgels and Poly(diallydimethylammonium chloride). Macromolecules, 2008, 41, 1785-1790.	4.8	37
140	Magnetic Nanoparticle–Polyelectrolyte Interaction: A Layered Approach for Biomedical Applications. Journal of Nanoscience and Nanotechnology, 2008, 8, 4033-4040.	0.9	37
141	Could multiresponsive hollow shell–shell nanocontainers offer an improved strategy for drug delivery?. Nanomedicine, 2016, 11, 2879-2883.	3.3	37
142	Waterborne physically crosslinked antimicrobial nanogels. Polymer Chemistry, 2016, 7, 364-369.	3.9	37
143	Direct Evidence of Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Soft and Porous Temperature-Sensitive PNiPAM Microgel Using Fluorescence Correlation Spectroscopyâ€. Journal of Physical Chemistry B, 2007, 111, 8527-8531.	2.6	36
144	Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Physical Chemistry Chemical Physics, 2011, 13, 3039-3047.	2.8	36

#	Article	IF	Citations
145	Quaternized microgels as soft templates for polyelectrolyte layer-by-layer assemblies. Polymer, 2014, 55, 1991-1999.	3.8	36
146	Probing the Internal Heterogeneity of Responsive Microgels Adsorbed to an Interface by a Sharp SFM Tip: Comparing Core–Shell and Hollow Microgels. Langmuir, 2018, 34, 4150-4158.	3.5	36
147	Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups. Polymers, 2018, 10, 791.	4.5	36
148	Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness. Nano Letters, 2019, 19, 8161-8170.	9.1	36
149	Influence of Size and Cross-Linking Density of Microgels on Cellular Uptake and Uptake Kinetics. Biomacromolecules, 2020, 21, 4532-4544.	5.4	36
150	Anisotropic Small Angle Light and Neutron Scattering from a Lyotropic Lamellar Phase under Shear. Journal De Physique II, 1996, 6, 529-542.	0.9	36
151	Polyelectrolyte coating of iron oxide nanoparticles for MRI-based cell tracking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 682-691.	3.3	35
152	Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels. Soft Matter, 2013, 9, 5862.	2.7	35
153	Microgel stabilized emulsions: Breaking on demand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 193-199.	4.7	35
154	Surface stoichiometric changes of n-GaAs after anodic treatment: An XPS study. Surface Science, 1986, 169, 414-424.	1.9	34
155	Influence of polyelectrolyte multilayer adsorption on the temperature sensitivity of poly(N-isopropylacrylamide) (PNiPAM) microgels. Colloid and Polymer Science, 2004, 282, 1146-1149.	2.1	34
156	Influence of pressure on the state of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) derived polymers in aqueous solution as probed by FTIR-spectroscopy. Polymer, 2010, 51, 3653-3659.	3.8	34
157	Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH. Carbohydrate Polymers, 2021, 267, 118117.	10.2	34
158	Linear and nonlinear rheology of micellar solutions in the isotropic, cubic and hexagonal phase probed by rheo-small-angle light scattering. Rheologica Acta, 1995, 34, 440-449.	2.4	33
159	Calibrating Differential Interference Contrast Microscopy with dual-focus Fluorescence Correlation Spectroscopy. Optics Express, 2008, 16, 4322.	3.4	32
160	Dual-focus fluorescence correlation spectroscopy: a robust tool for studying molecular crowding. Soft Matter, 2009, 5, 1358.	2.7	32
161	Thermoresponsive Copolymer Hydrogels on the Basis of <i>N</i> -Isopropylacrylamide and a Non-Ionic Surfactant Monomer: Swelling Behavior, Transparency and Rheological Properties. Macromolecules, 2010, 43, 9964-9971.	4.8	32
162	Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose. Cellulose, 2019, 26, 1517-1534.	4.9	32

#	Article	IF	CITATIONS
163	Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Physical Chemistry Chemical Physics, 2008, 10, 1870.	2.8	31
164	Viscosity of Semidilute and Concentrated Nonentangled Flexible Polyelectrolytes in Salt-Free Solution. Journal of Physical Chemistry B, 2019, 123, 5626-5634.	2.6	31
165	Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels. Soft Matter, 2020, 16, 668-678.	2.7	31
166	Dual-Focus Fluorescence Correlation Spectroscopy of Colloidal Solutions: Influence of Particle Size. Journal of Physical Chemistry B, 2008, 112, 8236-8240.	2.6	30
167	Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments. Soft Matter, 2015, 11, 2821-2843.	2.7	30
168	Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding. Polymer Chemistry, 2016, 7, 878-886.	3.9	30
169	Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy. Lab on A Chip, 2009, 9, 1248.	6.0	29
170	Can the Reaction Mechanism of Radical Solution Polymerization Explain the Microgel Final Particle Volume in Precipitation Polymerization of ⟨i⟩N⟨/i⟩â€Isopropylacrylamide?. Macromolecular Chemistry and Physics, 2015, 216, 1431-1440.	2.2	29
171	Payload release by liposome burst: Thermal collapse of microgels induces satellite destruction. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1491-1494.	3.3	29
172	Temperature-sensitive soft microgels at interfaces: airâ€"water versus oilâ€"water. Soft Matter, 2021, 17, 976-988.	2.7	29
173	Structures and dynamics of thermosensitive microgel suspensions studied with three-dimensional cross-correlated light scattering. Journal of Chemical Physics, 2005, 122, 034709.	3.0	28
174	Synthesis and characterization of nanogels of poly(N-isopropylacrylamide) by a combination of light and small-angle X-ray scattering. Physical Chemistry Chemical Physics, 2011, 13, 3108-3114.	2.8	28
175	Stimuli-Responsive Zwitterionic Microgels with Covalent and Ionic Cross-Links. Macromolecules, 2018, 51, 6707-6716.	4.8	28
176	Cononsolvency of thermoresponsive polymers: where we are now and where we are going. Soft Matter, 2022, 18, 2884-2909.	2.7	28
177	Surface Modification of Thermoresponsive Microgels via Layer-by-Layer Assembly of Polyelectrolyte Multilayers., 2006,, 45-51.		27
178	Heterogeneous crystallization of hard and soft spheres near flat and curved walls. European Physical Journal: Special Topics, 2014, 223, 439-454.	2.6	27
179	Tuning the Structure and Properties of Ultra-Low Cross-Linked Temperature-Sensitive Microgels at Interfaces via the Adsorption Pathway. Langmuir, 2019, 35, 14769-14781.	3.5	27
180	Shear orientation of a lamellar lyotropic liquid crystal. Rheologica Acta, 1995, 34, 132-136.	2.4	26

#	Article	IF	Citations
181	Rheology and diffusion in concentrated sterically stabilized polymer dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 97, 39-51.	4.7	26
182	The next step in precipitation polymerization of N-isopropylacrylamide: particle number density control by monochain globule surface charge modulation. Polymer Chemistry, 2016, 7, 5123-5131.	3.9	26
183	Synthesis of Polyampholyte Janusâ€like Microgels by Coacervation of Reactive Precursors in Precipitation Polymerization. Angewandte Chemie - International Edition, 2020, 59, 1248-1255.	13.8	26
184	Comparison between monomeric and polymeric surfactants. 2. Properties of polysurfactants in aqueous and nonaqueous solution. Macromolecules, 1992, 25, 3642-3650.	4.8	25
185	Use of poly(styrene)-block-poly(ethyleneoxide) as emulsifier in emulsion polymerization. Polymer Bulletin, 1994, 33, 521-528.	3.3	25
186	Fiber-Optic-Dynamic-Light-Scattering and Two-Color-Cross-Correlation Studies of Turbid, Concentrated, Sterically Stabilized Polystyrene Latex. Langmuir, 1995, 11, 4724-4727.	3.5	25
187	Comparison between Viscosity and Diffusion in Monodisperse and Bimodal Colloidal Suspensions. Langmuir, 1995, 11, 3699-3704.	3.5	25
188	Stimulated Transitions of Directed Nonequilibrium Selfâ€Assemblies. Advanced Materials, 2017, 29, 1703495.	21.0	25
189	Dynamically Cross-Linked Self-Assembled Thermoresponsive Microgels with Homogeneous Internal Structures. Langmuir, 2018, 34, 1601-1612.	3.5	25
190	Amphiphilic microgels adsorbed at oil–water interfaces as mixers of two immiscible liquids. Soft Matter, 2019, 15, 3978-3986.	2.7	25
191	Electrostatic expansion of polyelectrolyte microgels: Effect of solvent quality and added salt. Journal of Colloid and Interface Science, 2020, 558, 200-210.	9.4	25
192	Influence of sodium dodecyl sulfate on structure and rheology of aqueous solutions of the nonionic surfactant tetraethyleneglycol-monododecyl ether (C12E4). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185, 563-574.	4.7	24
193	Sealed and temperature-controlled sample cell for inverted and confocal microscopes and fluorescence correlation spectroscopy. Colloid and Polymer Science, 2008, 286, 1215-1222.	2.1	24
194	Size-Induced Variations in Lattice Dimension, Photoluminescence, and Photocatalytic Activity of ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2008, 8, 1301-1306.	0.9	24
195	Multilamellar vesicles ("onionsâ€) under shear quench: pathway of discontinuous size growth. Rheologica Acta, 2009, 48, 231-240.	2.4	24
196	Study of Layer-by-Layer Films on Thermoresponsive Nanogels Using Temperature-Controlled Dual-Focus Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 15907-15913.	2.6	24
197	Aging in dense suspensions of soft thermosensitive microgel particles studied with particle-tracking microrheology. Physical Review E, 2010, 81, 011404.	2.1	24
198	Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology, 2012, 23, 225707.	2.6	24

#	Article	IF	Citations
199	Influence of high-pressure on cononsolvency of poly(N-isopropylacrylamide) nanogels in water/methanol mixtures. Polymer, 2014, 55, 2000-2007.	3.8	24
200	Dynamic Structure Factor of Core–Shell Microgels: A Neutron Scattering and Mesoscale Hydrodynamic Simulation Study. Macromolecules, 2016, 49, 3608-3618.	4.8	23
201	Microgels react to force: mechanical properties, syntheses, and force-activated functions. Chemical Society Reviews, 2022, 51, 2939-2956.	38.1	23
202	Rheology and diffusion of concentrated monodisperse and bidisperse polymer latices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 99, 101-119.	4.7	22
203	Microgel PAINT – nanoscopic polarity imaging of adaptive microgels without covalent labelling. Chemical Science, 2019, 10, 10336-10342.	7.4	22
204	Influence of Charges on the Behavior of Polyelectrolyte Microgels Confined to Oil–Water Interfaces. Langmuir, 2020, 36, 11079-11093.	3.5	22
205	Lamellar phases under shear: variation of the layer orientation across the couette gap. Physical Chemistry Chemical Physics, 2000, 2, 3623-3626.	2.8	21
206	Influence of a Triblock Copolymer on Phase Behavior and Shear-Induced Topologies of a Surfactant Lamellar Phase. Langmuir, 2009, 25, 5476-5483.	3.5	21
207	Interfacial Properties of Emulsions Stabilized with Surfactant and Nonsurfactant Coated Boehmite Nanoparticles. Langmuir, 2010, 26, 17913-17918.	3.5	21
208	Femtosecond spectroscopy reveals huge differences in the photoisomerisation dynamics between azobenzenes linked to polymers and azobenzenes in solution. Physical Chemistry Chemical Physics, 2014, 16, 11549.	2.8	21
209	Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species. Polymer, 2017, 119, 50-58.	3.8	21
210	Direct Monitoring of Microgel Formation during Precipitation Polymerization of <i>N</i> -Isopropylacrylamide Using in Situ SANS. ACS Omega, 2019, 4, 3690-3699.	3.5	21
211	Semidilute solutions of liquid-crystalline polymers. Macromolecules, 1992, 25, 3795-3801.	4.8	20
212	Effect of Flow Reversal on the Shear Induced Formation of Multilamellar Vesicles. Journal of Physical Chemistry B, 2004, 108, 6328-6335.	2.6	20
213	Synthesis and solution behaviour of stimuli-sensitive zwitterionic microgels. Colloid and Polymer Science, 2015, 293, 3305-3318.	2.1	20
214	Conformation and dynamics of flexible polyelectrolytes in semidilute salt-free solutions. Journal of Chemical Physics, 2018, 148, 244902.	3.0	20
215	Microgel-stabilized liquid crystal emulsions enable an analyte-induced ordering transition. Chemical Communications, 2019, 55, 7255-7258.	4.1	20
216	Shear-induced onion formation of polymer-grafted lamellar phase. Soft Matter, 2012, 8, 5381.	2.7	19

#	Article	IF	Citations
217	Diffusion of guest molecules within sensitive core–shell microgel carriers. Journal of Colloid and Interface Science, 2014, 431, 204-208.	9.4	19
218	Intramicrogel Complexation of Oppositely Charged Compartments As a Route to Quasi-Hollow Structures. Macromolecules, 2017, 50, 4435-4445.	4.8	19
219	Phase behavior of ultrasoft spheres show stable bcc lattices. Physical Review E, 2020, 102, 052602.	2.1	19
220	In-situ study of the impact of temperature and architecture on the interfacial structure of microgels. Nature Communications, 2022, 13, .	12.8	19
221	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie - International Edition, 2018, 57, 9402-9407.	13.8	18
222	Structure formation in thermoresponsive microgel suspensions under shear flow. Journal of Physics Condensed Matter, 2004, 16, S3861-S3872.	1.8	17
223	Reduced UV light scattering in PDMS microfluidic devices. Lab on A Chip, 2011, 11, 966.	6.0	17
224	Polymer Nanogels and Microgels. , 2012, , 309-350.		17
225	Tailoring the Cavity of Hollow Polyelectrolyte Microgels. Macromolecular Rapid Communications, 2020, 41, e1900422.	3.9	17
226	Loading of doxorubicin into surface-attached stimuli-responsive microgels and its subsequent release under different conditions. Polymer, 2021, 213, 123227.	3.8	17
227	Shear induced order and disorder in lyotropic lamellar phases. , 1998, , 139-143.		15
228	Viscosity of bimodal charge-stabilized polymer dispersions. Journal of Rheology, 2000, 44, 1279-1292.	2.6	15
229	Stepwise Thermal and Photothermal Dissociation of a Hierarchical Superaggregate of DNAâ€Functionalized Gold Nanoparticles. Small, 2011, 7, 1397-1402.	10.0	15
230	The Swelling of Poly(Isopropylacrylamide) Near the Î, Temperature: A Comparison between Linear and Crossâ€Linked Chains. Macromolecular Chemistry and Physics, 2019, 220, 1800421.	2,2	15
231	Microgel organocatalysts: modulation of reaction rates at liquid–liquid interfaces. Materials Advances, 2020, 1, 2983-2993.	5.4	15
232	Compression and Ordering of Microgels in Monolayers Formed at Liquid–Liquid Interfaces: Computer Simulation Studies. ACS Applied Materials & Simulation	8.0	15
233	Structural Aspect of Gelation in Schizophyllan/Sorbitol Aqueous Solution. Polymer Journal, 1999, 31, 530-534.	2.7	14
234	Shear-Induced Mixing and Demixing in Aqueous Methyl Hydroxypropyl Cellulose Solutions. Biomacromolecules, 2003, 4, 453-460.	5.4	14

#	Article	IF	CITATIONS
235	Glycoâ€DNA–Gold Nanoparticles: Lectinâ€Mediated Assembly and Dualâ€Stimuli Response. Small, 2011, 7, 1954-1960.	10.0	14
236	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Journal of Physical Chemistry C, 2014, 118, 7174-7184.	3.1	14
237	Microgel in a Pore: Intraparticle Segregation or Snail-like Behavior Caused by Collapse and Swelling. Macromolecules, 2018, 51, 8147-8155.	4.8	14
238	Screening lengths and osmotic compressibility of flexible polyelectrolytes in excess salt solutions. Soft Matter, 2020, 16, 7289-7298.	2.7	14
239	Diffusion and Viscosity of Unentangled Polyelectrolytes. Macromolecules, 2021, 54, 8088-8103.	4.8	14
240	Shear-Induced Morphology Transition and Microphase Separation in a Lamellar Phase Doped with Clay Particles. Langmuir, 2004, 20, 3947-3953.	3.5	13
241	Scaling laws of entangled polysaccharides. Carbohydrate Polymers, 2020, 234, 115886.	10.2	13
242	Investigation of shear-induced structures in lyotropic mesophases by scattering experiments. Progress in Colloid and Polymer Science, 1997, 104, 90-96.	0.5	13
243	Interfacial Assembly of Anisotropic Core–Shell and Hollow Microgels. Langmuir, 2022, 38, 4351-4363.	3.5	13
244	Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. Science Advances, 2022, 8, .	10.3	13
245	Size Distributions out of Static Light Scattering: Inclusion of Distortions from the Experimental Setup, e.g., a SOFICA-type Goniometer. Journal of Colloid and Interface Science, 1999, 215, 72-84.	9.4	12
246	Shear Induced Structures in Lamellar Systems. Progress of Theoretical Physics Supplement, 2008, 175, 154-165.	0.1	12
247	Polyelectrolyte Microgels at a Liquid–Liquid Interface: Swelling and Long-Range Ordering. Journal of Physical Chemistry B, 2019, 123, 8590-8598.	2.6	12
248	Critical behavior of anhydride cured epoxies. Journal De Physique II, 1992, 2, 1453-1463.	0.9	12
249	Polystyrene- <i>block</i> -polyglycidol Micelles Cross-Linked with Titanium Tetraisopropoxide. Laser Light and Small-Angle X-ray Scattering Studies on Their Formation in Solution. Langmuir, 2010, 26, 16791-16800.	3.5	11
250	Scavenging One of the Liquids versus Emulsion Stabilization by Microgels in a Mixture of Two Immiscible Liquids. ACS Macro Letters, 2020, 9, 736-742.	4.8	11
251	Anisotropic Microgels Show Their Soft Side. Langmuir, 2022, 38, 5063-5080.	3.5	11
252	Microgels in Tandem with Enzymes: Tuning Adsorption of a pH―and Thermoresponsive Microgel for Improved Design of Enzymatic Biosensors. Advanced Materials Interfaces, 2022, 9, .	3.7	11

#	Article	IF	Citations
253	Solution behavior of two liquid crystalline polymers of different architectures. Colloid and Polymer Science, 1989, 267, 568-576.	2.1	10
254	Small-angle neutron scattering from a hexagonal phase under shear. Colloid and Polymer Science, 1996, 274, 85-88.	2.1	10
255	Shear-induced sponge-to-lamellar phase transition studied by rheo-birefringence. Colloid and Polymer Science, 2004, 282, 918-926.	2.1	10
256	Shear quench-induced disintegration of a nonionic surfactant C10E3 onion phase. Soft Matter, 2013, 9, 5391.	2.7	10
257	On the mechanism of payload release from liposomes bound to temperature-sensitive microgel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 396-402.	4.7	10
258	Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly- <i>N</i> -isopropylacrylamide (pNIPAM). Journal of Physical Chemistry B, 2021, 125, 1503-1512.	2.6	10
259	Absence of crystals in the phase behavior of hollow microgels. Physical Review E, 2021, 103, 022612.	2.1	10
260	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 457-463.	2.9	9
261	Structure of Doubly Temperature Sensitive Core-Shell Microgels Based on Poly-N-Isopropylacrylamide and Poly-N-Isopropylmethacrylamide. , 2006, , 35-40.		9
262	Methanolâ€induced change of the mechanism of the temperatureâ€and pressureâ€induced collapse of ⟨i⟩N⟨ i⟩â€Substituted acrylamide copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 532-544.	2.1	9
263	Enrichment of methanol inside pNIPAM gels in the cononsolvency-induced collapse. Physical Chemistry Chemical Physics, 2019, 21, 22811-22818.	2.8	9
264	Cu2+ tunable temperature-responsive Pickering foams stabilized by poly (N-isopropylacrylamide-co-vinyl imidazole) microgel: Significance for Cu2+ recovery via flotation. Chemical Engineering Journal, 2022, 442, 136274.	12.7	9
265	Thermoreversible gelation of a polysaccharide with immunological activity: Rheology and dynamic light scattering. Macromolecular Symposia, 1995, 99, 227-238.	0.7	8
266	Diffusion of rigid nanoparticles in crowded polymer-network hydrogels: dominance of segmental density over crosslinking density. Colloid and Polymer Science, 2017, 295, 1371-1381.	2.1	8
267	Fluorescence correlation spectroscopy reveals a cooperative unfolding of monomeric amyloid- \hat{l}^2 42 with a low Gibbs free energy. Scientific Reports, 2017, 7, 2154.	3.3	8
268	Refractive Index Mismatch Can Misindicate Anomalous Diffusion in Singleâ€Focus Fluorescence Correlation Spectroscopy. Macromolecular Chemistry and Physics, 2015, 216, 156-163.	2.2	7
269	Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. Polymer, 2017, 121, 320-327.	3.8	7
270	Nanoskopische Bildgebung der Vernetzungsdichte in Polymernetzwerken mittels Diarylethenâ€Photoschaltern. Angewandte Chemie, 2018, 130, 12460-12464.	2.0	7

#	Article	IF	Citations
271	Dynamics of monodisperse and bidisperse polymer latices. , 1995, , 79-84.		6
272	Emulsion polymerization of styrene in the presence of carbohydrate-based amphiphiles. Polymer Bulletin, 1995, 34, 271-277.	3.3	6
273	Methylâ€hydroxypropyl cellulose ―shear induced birefringence measurements in the semi–dilute regime. Macromolecular Symposia, 1997, 120, 247-257.	0.7	6
274	Dynamics during thermoreversible gelation of the polysaccharide schizophyllan. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1660-1664.	0.9	6
275	Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes. Nanotechnology, 2012, 23, 355707.	2.6	6
276	Synthesis and structure of temperature-sensitive nanocapsules. Colloid and Polymer Science, 2020, 298, 1179-1185.	2.1	6
277	Adsorption dynamics of thermoresponsive microgels with incorporated short oligo(ethylene glycol) chains at the oil–water interface. Soft Matter, 2021, 17, 6127-6139.	2.7	6
278	Interactions between a responsive microgel monolayer and a rigid colloid: from soft to hard interfaces. Physical Chemistry Chemical Physics, 2021, 23, 16754-16766.	2.8	6
279	Electrochemical Determination of Corrosion Protection Properties of Chromated Zinc, Zinc Alloy and Cadmium Electroplated Coatings. Transactions of the Institute of Metal Finishing, 1996, 74, 45-50.	1.3	5
280	Butterfly patterns in a sheared lamellar system. Physica B: Condensed Matter, 1997, 241-243, 1002-1004.	2.7	5
281	Polymer-Stabilized Emulsions: Influence of Emulsion Components on Rheological Properties and Droplet Size. , 2008, , 90-100.		5
282	Electrostatic complexes between thermosensitive cationic microgels and anionic liposomes: Formation and triggered release of encapsulated enzyme. European Polymer Journal, 2019, 119, 222-228.	5.4	5
283	PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes. PLoS ONE, 2019, 14, e0210898.	2.5	5
284	Solution Properties of Polyelectrolytes with Divalent Counterions. Macromolecules, 2021, 54, 10583-10593.	4.8	5
285	Correction method for the asymmetry of the tangential beam in Couette (or Searle) geometry used in rheo-small-angle neutron scattering. Journal of Applied Crystallography, 2004, 37, 438-444.	4.5	4
286	Transfer of the editorship. Colloid and Polymer Science, 2014, 292, 1-3.	2.1	4
287	Dilution leading to viscosity increase based on the cononsolvency effect of temperature-sensitive microgel suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 377-385.	4.7	4
288	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133, 2310-2317.	2.0	4

#	Article	IF	Citations
289	Trends in polymer chemistry 1995. Acta Polymerica, 1996, 47, 131-140.	0.9	3
290	Rheological and Rheo-Optical Investigation of Cellulose Ethers in Aqueous Solution. Cellulose, 2003, 10, 13-26.	4.9	3
291	Synthesis and aggregation behaviour of amphiphilic block copolymers with random middle block. Colloid and Polymer Science, 2009, 287, 1183-1193.	2.1	3
292	Combined UV–Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 74-81.	4.7	3
293	Synthesis of Polyampholyte Janusâ€like Microgels by Coacervation of Reactive Precursors in Precipitation Polymerization. Angewandte Chemie, 2020, 132, 1264-1271.	2.0	3
294	Emulsion polymerization of styrene in the presence of carbohydrate-based amphiphiles. Polymer Bulletin, 1995, 34, 691-698.	3.3	2
295	Investigation of shear-induced structures in lyotropic mesophases by scattering experiments. , 1997, , 90-96.		2
296	Polymer/Colloid Interactions and Soft Polymer Colloids. , 2012, , 315-338.		2
297	Controlled Synthesis and Fluorescence Tracking of Highly Uniform Poly(N -isopropylacrylamide) Microgels. Journal of Visualized Experiments, 2016, , .	0.3	2
298	Structure of Doubly Temperature Sensitive Core-Shell Microgels Based on Poly-N-Isopropylacrylamide and Poly-N-Isopropylmethacrylamide. , 2006, , 35-40.		2
299	Synthesis, Physicochemical Characterization and MR Relaxometry of Aqueous Ferrofluids. Journal of Nanoscience and Nanotechnology, 2008, 8, 2399-2409.	0.9	2
300	Photo- and thermo-responsive microgels with supramolecular crosslinks for wavelength tunability of the volume phase transition temperature. Physical Chemistry Chemical Physics, 2022, 24, 14408-14415.	2.8	2
301	Trends in polymer chemistry 1996. Acta Polymerica, 1997, 48, 107-115.	0.9	1
302	Tribute to Walther Burchard. Macromolecules, 2005, 38, 5357-5358.	4.8	1
303	Manuscript submission and processing: the new electronic pathway. Colloid and Polymer Science, 2006, 284, 1351-1351.	2.1	1
304	Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system. , $2012, , .$		1
305	Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems. Zeitschrift Fur Physikalische Chemie, 2014, 228, 1033-1052.	2.8	1
306	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie, 2018, 130, 9546-9551.	2.0	1

#	Article	lF	CITATIONS
307	Preface to the Growth of Colloid and Interface Science Special Issue. Langmuir, 2019, 35, 8517-8518.	3.5	1
308	Temperature-induced unloading of liposomes bound to microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127590.	4.7	1
309	Fluctuation suppression in microgels by polymer electrolytes. Structural Dynamics, 2020, 7, 034302.	2.3	1
310	Surface Modification of Thermoresponsive Microgels via Layer-by-Layer Assembly of Polyelectrolyte Multilayers. , 0 , , $45-51$.		1
311	Solution properties of polysaccharides with immunological activity. , 1993, , 337-337.		0
312	Möglichkeiten der faseroptischen Lichtstreuung zur Untersuchung hochkonzentrierter Dispersionen. Chemie-Ingenieur-Technik, 1997, 69, 107-111.	0.8	0
313	Colloid and polymer science–enhances its presence in Asia. Colloid and Polymer Science, 2006, 284, 699-699.	2.1	0
314	Honoring Janos H. Fendler. Colloid and Polymer Science, 2008, 286, 1-2.	2.1	0
315	In Situ and Cryo (S)TEM Imaging of Internal Microgel Architectures. Microscopy and Microanalysis, 2016, 22, 70-71.	0.4	0
316	Preface to The 15th Pacific Polymer Conference (PPC-15) Virtual Issue. Langmuir, 2019, 35, 4413-4414.	3 . 5	0
317	Rücktitelbild: Synthesis of Polyampholyte Janusâ€ike Microgels by Coacervation of Reactive Precursors in Precipitation Polymerization (Angew. Chem. 3/2020). Angewandte Chemie, 2020, 132, 1372-1372.	2.0	0
318	Frontispiece: Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
319	Frontispiz: Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133, .	2.0	0
320	Small-angle neutron scattering study of shear-induced phase separation in aqueous poly(N-isopropylacrylamide) solutions. E-Polymers, 2004, 4, .	3.0	0
321	Temperature-Sensitive Composite Hydrogels: Coupling Between Gel Matrix and Embedded Nano- and Microgels., 2013,, 91-100.		0
322	Rheology of Temperature Sensitive Polymer Dispersions. , 1998, , 595-596.		0
323	Shear Induced Reorientations in a Defective Lyotropic Lamellar Phase. , 1998, , 589-590.		0
324	Preface to the Françoise M. Winnik Special Issue. Langmuir, 2022, 38, 5031-5032.	3. 5	0