Helen J Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9379302/publications.pdf

Version: 2024-02-01

71102 91884 5,755 137 41 69 citations h-index g-index papers 139 139 139 5150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. Journal of the American Chemical Society, 2022, 144, 2120-2128.	13.7	26
2	Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Analytical Chemistry, 2022, 94, 5608-5614.	6.5	20
3	Discovery, validation, and diagnostic ability of multiple proteinâ€based biomarkers in saliva and gingival crevicular fluid to distinguish between health and periodontal diseases. Journal of Clinical Periodontology, 2022, 49, 622-632.	4.9	21
4	Native ambient mass spectrometry of intact protein assemblies directly from <i>Escherichia coli </i> colonies. Chemical Communications, 2022, 58, 6857-6860.	4.1	4
5	Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
6	Quantitative Characterization of Three Carbonic Anhydrase Inhibitors by LESA Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1168-1175.	2.8	2
7	Mass Spectrometry Detection and Imaging of a Nonâ€Covalent Protein–Drug Complex in Tissue from Orally Dosed Rats. Angewandte Chemie, 2022, 134, .	2.0	1
8	Mass Spectrometry Detection and Imaging of a Nonâ€Covalent Protein–Drug Complex in Tissue from Orally Dosed Rats. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
9	Native Mass Spectrometry Imaging of Proteins and Protein Complexes by Nano-DESI. Analytical Chemistry, 2021, 93, 4619-4627.	6.5	63
10	Liquid Extraction Surface Analysis Mass Spectrometry of ESKAPE Pathogens. Journal of the American Society for Mass Spectrometry, 2021, 32, 1345-1351.	2.8	8
11	Simultaneous spatial, conformational, and mass analysis of intact proteins and protein assemblies by nano-DESI travelling wave ion mobility mass spectrometry imaging. International Journal of Mass Spectrometry, 2021, 468, 116656.	1.5	13
12	Structural proteomics and protein complexes – special issue. Proteomics, 2021, 21, e2000286.	2.2	0
13	In situ analysis of intact proteins by ion mobility mass spectrometry. TrAC - Trends in Analytical Chemistry, 2020, 124, 115534.	11.4	9
14	Electroporation and Mass Spectrometry: A New Paradigm for In Situ Analysis of Intact Proteins Direct from Living Yeast Colonies. Analytical Chemistry, 2020, 92, 2605-2611.	6.5	8
15	Structural Analysis of 14-3-3-ζ-Derived Phosphopeptides Using Electron Capture Dissociation Mass Spectrometry, Traveling Wave Ion Mobility Spectrometry, and Molecular Modeling. Journal of Physical Chemistry B, 2020, 124, 461-469.	2.6	5
16	Direct identification of bacterial and human proteins from infected wounds in living 3D skin models. Scientific Reports, 2020, 10, 11900.	3.3	15
17	Native Mass Spectrometry Imaging and <i>In Situ</i> Top-Down Identification of Intact Proteins Directly from Tissue. Journal of the American Society for Mass Spectrometry, 2020, 31, 2531-2537.	2.8	25
18	Self-Incompatibility Triggers Irreversible Oxidative Modification of Proteins in Incompatible Pollen. Plant Physiology, 2020, 183, 1391-1404.	4.8	13

#	Article	IF	CITATIONS
19	Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Scientific Reports, 2020, 10, 7950.	3.3	10
20	Native LESA TWIMS-MSI: Spatial, Conformational, and Mass Analysis of Proteins and Protein Complexes. Journal of the American Society for Mass Spectrometry, 2020, 31, 873-879.	2.8	28
21	Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS. Analytical Chemistry, 2020, 92, 2885-2890.	6.5	37
22	High-Field Asymmetric Waveform Ion Mobility Spectrometry and Native Mass Spectrometry: Analysis of Intact Protein Assemblies and Protein Complexes. Analytical Chemistry, 2020, 92, 6811-6816.	6.5	37
23	LESA Cyclic Ion Mobility Mass Spectrometry of Intact Proteins from Thin Tissue Sections. Analytical Chemistry, 2020, 92, 6321-6326.	6.5	23
24	Liquid Extraction Surface Analysis (LESA) High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Mass Spectrometry for In Situ Analysis of Intact Proteins. Methods in Molecular Biology, 2020, 2084, 191-201.	0.9	3
25	In situ mass spectrometry analysis of intact proteins and protein complexes from biological substrates. Biochemical Society Transactions, 2020, 48, 317-326.	3.4	14
26	Investigation of the 12-Month Stability of Dried Blood and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Analytical Chemistry, 2019, 91, 14306-14313.	6.5	43
27	Quantitative Imaging of Proteins in Tissue by Stable Isotope Labeled Mimetic Liquid Extraction Surface Analysis Mass Spectrometry. Analytical Chemistry, 2019, 91, 14198-14202.	6.5	21
28	Probing the Fundamentals of Native Liquid Extraction Surface Analysis Mass Spectrometry of Proteins: Can Proteins Refold during Extraction?. Analytical Chemistry, 2019, 91, 12246-12254.	6.5	8
29	Direct Mass Spectrometry Analysis of Protein Complexes and Intact Proteins up to >70 kDa from Tissue. Analytical Chemistry, 2019, 91, 6962-6966.	6.5	29
30	Application of High-Field Asymmetric Waveform Ion Mobility Separation to LESA Mass Spectrometry of Bacteria. Analytical Chemistry, 2019, 91, 4755-4761.	6.5	12
31	Workflow for fast lipid tissue screening using LESA-FT-ICR-MS. Analytical Methods, 2019, 11, 2385-2395.	2.7	7
32	Native mass spectrometry imaging of intact proteins and protein complexes in thin tissue sections. International Journal of Mass Spectrometry, 2019, 437, 23-29.	1.5	50
33	Ambient ionisation mass spectrometry for in situ analysis of intact proteins. Journal of Mass Spectrometry, 2018, 53, 565-578.	1.6	15
34	Ambient surface mass spectrometry–ion mobility spectrometry of intact proteins. Current Opinion in Chemical Biology, 2018, 42, 67-75.	6.1	12
35	High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots. Journal of Proteome Research, 2018, 17, 1997-2004.	3.7	25
36	LESA MS Imaging of Heat-Preserved and Frozen Tissue: Benefits of Multistep Static FAIMS. Analytical Chemistry, 2018, 90, 13306-13314.	6.5	22

#	Article	IF	Citations
37	Liquid Extraction Surface Analysis (LESA) Electron-Induced Dissociation and Collision-Induced Dissociation Mass Spectrometry of Small Molecule Drug Compounds. Journal of the American Society for Mass Spectrometry, 2018, 29, 2218-2226.	2.8	12
38	Brain Targeting Delivery Facilitated by Ligand-Functionalized Layered Double Hydroxide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20326-20333.	8.0	45
39	Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity. Plant Physiology, 2017, 173, 1606-1616.	4.8	10
40	Raster-Mode Continuous-Flow Liquid Microjunction Mass Spectrometry Imaging of Proteins in Thin Tissue Sections. Analytical Chemistry, 2017, 89, 5683-5687.	6.5	33
41	Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications. Journal of the American Society for Mass Spectrometry, 2017, 28, 1775-1786.	2.8	14
42	MnAl Layered Double Hydroxide Nanoparticles as a Dualâ€Functional Platform for Magnetic Resonance Imaging and siRNA Delivery. Chemistry - A European Journal, 2017, 23, 14299-14306.	3.3	55
43	Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria. Journal of the American Society for Mass Spectrometry, 2017, 28, 2066-2077.	2.8	32
44	Liquid extraction surface analysis for native mass spectrometry: Protein complexes and ligand binding. International Journal of Mass Spectrometry, 2017, 420, 43-50.	1.5	33
45	Separation of <i>cis</i> and <i>trans</i> Isomers of Polyproline by FAIMS Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 2071-2074.	2.8	9
46	Direct Tissue Profiling of Protein Complexes: Toward Native Mass Spectrometry Imaging. Analytical Chemistry, 2016, 88, 606-609.	6.5	30
47	LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue. Analytical Chemistry, 2016, 88, 6758-6766.	6.5	66
48	Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion?. Analytical Chemistry, 2016, 88, 6425-6432.	6.5	57
49	MALDI Imaging of Liquid Extraction Surface Analysis Sampled Tissue. Analytical Chemistry, 2016, 88, 8433-8440.	6.5	25
50	To What Extent is FAIMS Beneficial in the Analysis of Proteins?. Journal of the American Society for Mass Spectrometry, 2016, 27, 566-577.	2.8	54
51	Online LC-FAIMS-MS/MS for the Analysis of Phosphorylation in Proteins. Methods in Molecular Biology, 2016, 1355, 241-250.	0.9	8
52	Electron capture dissociation mass spectrometry of phosphopeptides: Arginine and phosphoserine. International Journal of Mass Spectrometry, 2015, 390, 63-70.	1.5	6
53	Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from Biological Substrates. Analytical Chemistry, 2015, 87, 6794-6800.	6.5	75
54	Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots. Analyst, The, 2015, 140, 6879-6885.	3.5	53

#	Article	IF	CITATIONS
55	Probing the Electron Capture Dissociation Mass Spectrometry of Phosphopeptides with Traveling Wave Ion Mobility Spectrometry and Molecular Dynamics Simulations. Journal of the American Society for Mass Spectrometry, 2015, 26, 1004-1013.	2.8	14
56	FAIMS and Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply Phosphorylated Peptides. Journal of Proteome Research, 2015, 14, 5077-5087.	3.7	23
57	Comprehensive mapping of Oâ€glycosylation in flagellin from <i>Campylobacter jejuni</i> 11168: A multienzyme differential ion mobility mass spectrometry approach. Proteomics, 2015, 15, 2733-2745.	2.2	33
58	Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates. Journal of the American Society for Mass Spectrometry, 2015, 26, 1320-1327.	2.8	43
59	Robust twin boosting for feature selection from high-dimensional omics data with label noise. Information Sciences, 2015, 291, 1-18.	6.9	32
60	Challenges and opportunities in mass spectrometric analysis of proteins from dried blood spots. Expert Review of Proteomics, 2014, 11, 685-695.	3.0	23
61	Top-Down and Bottom-Up Identification of Proteins by Liquid Extraction Surface Analysis Mass Spectrometry of Healthy and Diseased Human Liver Tissue. Journal of the American Society for Mass Spectrometry, 2014, 25, 1953-1961.	2.8	78
62	De Novo Design of Ln(III) Coiled Coils for Imaging Applications. Journal of the American Chemical Society, 2014, 136, 1166-1169.	13.7	55
63	Direct Analysis of Intact Proteins from <i>Escherichia coli</i> li> Colonies by Liquid Extraction Surface Analysis Mass Spectrometry. Analytical Chemistry, 2014, 86, 10504-10510.	6. 5	66
64	Compound heterozygotes and betaâ€thalassemia: Topâ€down mass spectrometry for detection of hemoglobinopathies. Proteomics, 2014, 14, 1232-1238.	2.2	40
65	Unusual ECD fragmentation attributed to gas-phase helix formation in a conformationally dynamic peptide. Chemical Communications, 2014, 50, 198-200.	4.1	14
66	Electron Capture Dissociation and Collision Induced Dissociation of S-Dipalmitoylated Peptides. Journal of the American Society for Mass Spectrometry, 2013, 24, 1224-1227.	2.8	5
67	Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis. Journal of the American Society for Mass Spectrometry, 2013, 24, 1242-1249.	2.8	61
68	Probing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics. Journal of the American Society for Mass Spectrometry, 2013, 24, 431-443.	2.8	30
69	Large-Scale Analysis of Peptide Sequence Variants: The Case for High-Field Asymmetric Waveform Ion Mobility Spectrometry. Analytical Chemistry, 2013, 85, 4836-4843.	6.5	23
70	Hemoglobin variant analysis of whole blood and dried blood spots by MS. Bioanalysis, 2013, 5, 2043-2052.	1.5	7
71	Analysis of premalignant pancreatic cancer mass spectrometry data for biomarker selection using a group search optimizer. Transactions of the Institute of Measurement and Control, 2012, 34, 668-676.	1.7	13
72	Plasma Levels of Complement 4a Protein are Increased in Alzheimer's Disease. Alzheimer Disease and Associated Disorders, 2012, 26, 329-334.	1.3	33

#	Article	IF	Citations
73	Higher Energy Collision Dissociation (HCD) Product Ion-Triggered Electron Transfer Dissociation (ETD) Mass Spectrometry for the Analysis of $\langle i \rangle N \langle i \rangle$ -Linked Glycoproteins. Journal of Proteome Research, 2012, 11, 4517-4525.	3.7	150
74	Top-Down Proteomics and Direct Surface Sampling of Neonatal Dried Blood Spots: Diagnosis of Unknown Hemoglobin Variants. Journal of the American Society for Mass Spectrometry, 2012, 23, 1921-1930.	2.8	71
75	The Radical lon Chemistry of <i>>S</i> -Nitrosylated Peptides. Journal of the American Society for Mass Spectrometry, 2012, 23, 2063-2074.	2.8	7
76	Separation and Identification of Isomeric Glycopeptides by High Field Asymmetric Waveform Ion Mobility Spectrometry. Analytical Chemistry, 2012, 84, 2597-2601.	6.5	105
77	Dissociation techniques in mass spectrometry-based proteomics. Analyst, The, 2011, 136, 3419.	3.5	37
78	Electron induced dissociation (EID) tandem mass spectrometry of octaethylporphyrin and its iron(<scp>iii</scp>) complex. Chemical Communications, 2011, 47, 418-420.	4.1	19
79	On-line liquid chromatography neutral loss-triggered electron transfer dissociationmass spectrometry for the targeted analysis of citrullinated peptides. Analytical Methods, 2011, 3, 259-266.	2.7	12
80	Novel Glycosylation Sites Localized in <i>Campylobacter jejuni</i> Flagellin FlaA by Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry. Journal of Proteome Research, 2011, 10, 1238-1245.	3.7	26
81	Hemoglobin Variant Analysis via Direct Surface Sampling of Dried Blood Spots Coupled with High-Resolution Mass Spectrometry. Analytical Chemistry, 2011, 83, 2265-2270.	6.5	109
82	Separation of a Set of Peptide Sequence Isomers Using Differential Ion Mobility Spectrometry. Analytical Chemistry, 2011, 83, 6918-6923.	6.5	53
83	Manipulation of quorum sensing regulation in Pseudomonas fluorescens NCIMB 10586 to increase mupirocin production. Applied Microbiology and Biotechnology, 2011, 90, 1017-1026.	3.6	13
84	Nitration of lysozyme by ultrasonic waves; demonstration by immunochemistry and mass spectrometry. Ultrasonics Sonochemistry, 2011, 18, 334-344.	8.2	0
85	Electron capture dissociation mass spectrometry of metallo-supramolecular complexes. Journal of the American Society for Mass Spectrometry, 2010, 21, 300-309.	2.8	17
86	Can museum egg specimens be used for proteomic analyses?. Proteome Science, 2010, 8, 40.	1.7	10
87	Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. Journal of the American Society for Mass Spectrometry, 2010, 21, 268-277.	2.8	42
88	Electron induced dissociation: A mass spectrometry technique for the structural analysis of trinuclear oxo-centred carboxylate-bridged iron complexes. Journal of the American Society for Mass Spectrometry, 2010, 21, 1398-1403.	2.8	14
89	Retention of enzyme activity with a boron-doped diamond electrode in the electro-oxidative nitration of lysozyme. Enzyme and Microbial Technology, 2010, 46, 472-478.	3.2	8
90	Differential Phosphoproteomics of Fibroblast Growth Factor Signaling: Identification of Src Family Kinase-Mediated Phosphorylation Events. Journal of Proteome Research, 2010, 9, 2317-2328.	3.7	46

#	Article	IF	CITATIONS
91	Proteomic Analysis of a Noninvasive Human Model of Acute Inflammation and Its Resolution: The Twenty-one Day Gingivitis Model. Journal of Proteome Research, 2010, 9, 4732-4744.	3.7	72
92	Top-Down Mass Analysis of Protein Tyrosine Nitration: Comparison of Electron Capture Dissociation with "Slow-Heating―Tandem Mass Spectrometry Methods. Analytical Chemistry, 2010, 82, 7283-7292.	6.5	25
93	Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry. Analytical Chemistry, 2010, 82, 8327-8334.	6.5	74
94	Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides. Physical Chemistry Chemical Physics, 2010, 12, 13394.	2.8	16
95	Large Scale Localization of Protein Phosphorylation by Use of Electron Capture Dissociation Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 904-912.	3.8	79
96	Hot electron capture dissociation distinguishes leucine from isoleucine in a novel hemoglobin variant, Hb Askew, Î ² 54(D5)Valâ†'lle. Journal of the American Society for Mass Spectrometry, 2009, 20, 1707-1713.	2.8	22
97	Characterization of polyphosphoesters by fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20, 2238-2247.	2.8	18
98	Highâ€field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with highâ€resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides. Rapid Communications in Mass Spectrometry, 2009, 23, 1963-1969.	1.5	75
99	Electron capture dissociation and collision-induced dissociation of metal ion (Ag ⁺ ,) Tj ETQq1 1 0.78 polyamidoamine (PAMAM) dendrimers. Journal of the American Society for Mass Spectrometry, 2009, 20, 674-681.	34314 rgB ⁻ 2.8	T /Overlock 1 39
100	Activated ion electron capture dissociation (AI ECD) of proteins: Synchronization of infrared and electron irradiation with ion magnetron motion. Journal of the American Society for Mass Spectrometry, 2009, 20, 763-771.	2.8	33
101	Database Search Strategies for Proteomic Data Sets Generated by Electron Capture Dissociation Mass Spectrometry. Journal of Proteome Research, 2009, 8, 5475-5484.	3.7	14
102	SLoMo: Automated Site Localization of Modifications from ETD/ECD Mass Spectra. Journal of Proteome Research, 2009, 8, 1965-1971.	3.7	92
103	On-Line Liquid Chromatography Electron Capture Dissociation for the Characterization of Phosphorylation Sites in Proteins. Methods in Molecular Biology, 2009, 527, 191-199.	0.9	2
104	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in the Analysis of Peptides and Proteins., 2009,, 121-152.		1
105	The effect of phosphorylation on the electron capture dissociation of peptide ions. Journal of the American Society for Mass Spectrometry, 2008, 19, 1263-1274.	2.8	46
106	Electron capture dissociation, electron detachment dissociation, and collision-induced dissociation of polyamidoamine (PAMAM) dendrimer ions with amino, amidoethanol, and sodium carboxylate surface groups. Journal of the American Society for Mass Spectrometry, 2008, 19, 1312-1319.	2.8	28
107	Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Archives of Biochemistry and Biophysics, 2008, 474, 1-7.	3.0	16
108	Targeted Online Liquid Chromatography Electron Capture Dissociation Mass Spectrometry for the Localization of Sites of in Vivo Phosphorylation in Human Sprouty2. Analytical Chemistry, 2008, 80, 6650-6657.	6.5	30

#	Article	IF	Citations
109	Electron capture dissociation in the analysis of protein phosphorylation. Expert Review of Proteomics, 2007, 4, 149-159.	3.0	31
110	Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Analytical Chemistry, 2007, 79, 4595-4602.	6.5	170
111	Liquid chromatography electron capture dissociation tandem mass spectrometry (LC-ECD-MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CID-MS/MS) for the identification of proteins. Journal of the American Society for Mass Spectrometry, 2007, 18, 891-897.	2.8	41
112	Protein partners in the life history of activated fibroblast growth factor receptors. Proteomics, 2007, 7, 4565-4578.	2.2	19
113	Strategy for the Identification of Sites of Phosphorylation in Proteins:  Neutral Loss Triggered Electron Capture Dissociation. Analytical Chemistry, 2006, 78, 7563-7569.	6.5	56
114	Mass spectrometry in demonstrating the site-specific nitration of hen egg white lysozyme by an improved electrochemical method. Analytical Biochemistry, 2006, 356, 171-181.	2.4	15
115	Investigation of the presence of b ions in electron capture dissociation mass spectra. Journal of the American Society for Mass Spectrometry, 2005, 16, 1932-1940.	2.8	60
116	The role of electron capture dissociation in biomolecular analysis. Mass Spectrometry Reviews, 2005, 24, 201-222.	5.4	453
117	Liver Tumors in Wild Flatfish: A Histopathological, Proteomic, and Metabolomic Study. OMICS A Journal of Integrative Biology, 2005, 9, 281-299.	2.0	82
118	Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 19136-19145.	3.4	125
119	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Analysis of Small Ubiquitin-like Modifier (SUMO) Modification:Â Identification of Lysines in RanBP2 and SUMO Targeted for Modification during the E3 AutoSUMOylation Reaction. Analytical Chemistry, 2005, 77, 6310-6319.	6.5	51
120	Data-Dependent Electron Capture Dissociation FTâ^'ICR Mass Spectrometry for Proteomic Analyses. Journal of Proteome Research, 2005, 4, 1538-1544.	3.7	132
121	Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry of cyclodepsipeptides, branched peptides, and ε-peptides. International Journal of Mass Spectrometry, 2004, 234, 23-35.	1.5	27
122	Identification of Sites of Ubiquitination in Proteins:Â A Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Approach. Analytical Chemistry, 2004, 76, 6982-6988.	6.5	50
123	Determination of the activation energy for unimolecular dissociation of a non-covalent gas-phase peptide: Substrate complex by infrared multiphoton dissociation fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 1282-1289.	2.8	14
124	Secondary fragmentation of linear peptides in electron capture dissociation. International Journal of Mass Spectrometry, 2003, 228, 723-728.	1.5	81
125	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Analysis of Metal-Ion Selected Dynamic Protein Libraries. Journal of the American Chemical Society, 2003, 125, 5331-5339.	13.7	36
126	Letter: The Diagnostic Value of Amino Acid Side-Chain Losses in Electron Capture Dissociation of Polypeptides. Comment on: "Can the (M.â^'X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides?â€, Eur. J. Mass Spectrom. 8, 461–469 (2002). European Journal of Mass Spectrometry, 2003, 9, 221-222.	1.0	36

#	Article	IF	CITATIONS
127	High Resolution Tandem Mass Spectrometry for Structural Biochemistry. Current Organic Chemistry, 2003, 7, 1503-1525.	1.6	38
128	Supramolecular Organization of α,αâ€~-Disubstituted Sexithiophenes. Journal of the American Chemical Society, 2002, 124, 1269-1275.	13.7	211
129	Characterization of amino acid side chain losses in electron capture dissociation. Journal of the American Society for Mass Spectrometry, 2002, 13, 241-249.	2.8	146
130	Characterization of the P13 membrane protein of Borrelia burgdorferi by mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 295-299.	2.8	20
131	Direct detection and quantitation of He@C60 by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 1349-1355.	2.8	9
132	Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-Glycosylated Tryptic Peptide To Yield Complementary Sequence Information. Analytical Chemistry, 2001, 73, 4530-4536.	6.5	362
133	Specific Electrochemical Nitration of Horse Heart Myoglobin. Archives of Biochemistry and Biophysics, 2001, 392, 169-179.	3.0	24
134	Electrospray Ionization Fourier Transform Mass Spectrometric Analysis of Wine. Journal of Agricultural and Food Chemistry, 2001, 49, 5710-5718.	5.2	117
135	A 9.4 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: Description and Performance. European Journal of Mass Spectrometry, 2000, 6, 267-275.	1.0	66
136	Letter: Target capture of argon by fullerene radical cations in high- energy collisions. European Journal of Mass Spectrometry, 1995, 1, 501.	0.7	5
137	Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. Angewandte Chemie, 0, , .	2.0	2