
Wei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum. Analytical Chemistry, 2013, 85, 10270-10276.	6.5	126
2	Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosensors and Bioelectronics, 2016, 79, 581-588.	10.1	97
3	Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosensors and Bioelectronics, 2014, 52, 76-81.	10.1	77
4	A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 51-57.	3.9	73
5	Ring-Oven Washing Technique Integrated Paper-based Immunodevice for Sensitive Detection of Cancer Biomarker. Analytical Chemistry, 2015, 87, 7951-7957.	6.5	71
6	Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. Journal of Analysis and Testing, 2022, 6, 247-273.	5.1	65
7	Nanoparticle coated paper-based chemiluminescence device for the determination of l-cysteine. Talanta, 2014, 120, 336-341.	5.5	49
8	Paper-based laser induced fluorescence immunodevice combining with CdTe embedded silica nanoparticles signal enhancement strategy. Sensors and Actuators B: Chemical, 2017, 242, 87-94.	7.8	45
9	Paper-based chemiluminescence immunodevice with temporal controls of reagent transport technique. Sensors and Actuators B: Chemical, 2017, 250, 324-332.	7.8	44
10	A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1298-1303.	3.9	42
11	Paper-based fluorometric immunodevice with quantum-dot labeled antibodies for simultaneous detection of carcinoembryonic antigen and prostate specific antigen. Mikrochimica Acta, 2019, 186, 112.	5.0	42
12	Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Mikrochimica Acta, 2018, 185, 187.	5.0	35
13	Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO. Analytical Chemistry, 2022, 94, 8642-8650.	6.5	31
14	Determination of nitrofurans in feeds based on silver nanoparticle-catalyzed chemiluminescence. Journal of Luminescence, 2012, 132, 1048-1054.	3.1	27
15	Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 243-248.	3.9	22
16	Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G. Talanta, 2016, 147, 430-436.	5.5	18
17	Paper-based immunosensor with NH2-MIL-53(Fe) as stable and multifunctional signal label for dual-mode detection of prostate specific antigen. Journal of Luminescence, 2021, 230, 117708.	3.1	17
18	Copper-based metal–organic xerogels on paper for chemiluminescence detection of dopamine. Analytical Methods, 2020, 12, 4191-4198.	2.7	16

Wei Liu

#	Article	IF	CITATIONS
19	Fabrication of paper-based microfluidic device by recycling foamed plastic and the application for multiplexed measurement of biomarkers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117341.	3.9	14
20	Target-controlled <i>in situ</i> formation of C-quadruplex DNAzyme for a sensitive visual assay of telomerase activity. Analyst, The, 2019, 144, 5959-5964.	3.5	14
21	Long-Lasting Luminol Chemiluminescence Emission with 1,10-Phenanthroline-2,9-dicarboxylic Acid Copper(II) Complex on Paper. ACS Applied Materials & Interfaces, 2021, 13, 53787-53797.	8.0	13
22	Rhombic dodecahedral gold nanoparticles: chiral sensing probes for naked-eye recognition of histidine enantiomers. Chemical Communications, 2022, 58, 427-430.	4.1	12
23	An inkjet printing paper-based immunodevice for fluorescence determination of immunoglobulin G. Analytical Methods, 2019, 11, 3452-3459.	2.7	11
24	Sensitive detection of intracellular telomerase activity <i>via</i> double signal amplification and ratiometric fluorescence resonance energy transfer. Analyst, The, 2020, 145, 6992-6999.	3.5	10
25	Effect of amino compounds on luminol-H2O2-gold nanoparticle chemiluminescence system. Analytical and Bioanalytical Chemistry, 2016, 408, 8821-8830.	3.7	9
26	Fe(III) bipyridyl or phenanthroline complexes with oxidaseâ€ i ke activity for sensitive colorimetric detection of glutathione. Luminescence, 2020, 35, 1350-1359.	2.9	8
27	Comparative evaluation and design of a G-triplex/thioflavin T-based molecular beacon. Analyst, The, 2021, 146, 2567-2573.	3.5	8
28	Threeâ€dimensional ringâ€oven washing technique for a paperâ€based immunodevice. Luminescence, 2020, 35, 503-511.	2.9	4
29	Portable and sensitive detection of cancer cells <i>via</i> a handheld luminometer. Analyst, The, 0, , .	3.5	3
30	Visual detection of glucose by hydrogen peroxide test strips. New Journal of Chemistry, 2022, 46, 4162-4166.	2.8	2