Ana Victoria Villar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Profibrotic Role of Inducible Heat Shock Protein 90α Isoform in Systemic Sclerosis. Journal of Immunology, 2022, 209, 38-48.	0.8	2
2	Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection. Chemical Science, 2021, 12, 2480-2487.	7.4	11
3	Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2021, 159, 38-47.	1.9	7
4	Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids. Chemical Science, 2021, 12, 15090-15103.	7.4	7
5	Sex-Specific Regulation of miR-29b in the Myocardium Under Pressure Overload is Associated with Differential Molecular, Structural and Functional Remodeling Patterns in Mice and Patients with Aortic Stenosis. Cells, 2020, 9, 833.	4.1	15
6	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	12.2	177
7	Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein. Journal of Molecular and Cellular Cardiology, 2018, 123, 75-87.	1.9	16
8	BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovascular Research, 2016, 110, 331-345.	3.8	40
9	Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cellular Signalling, 2016, 28, 1563-1579.	3.6	64
10	MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases. , 2016, , 285-317.		2
11	p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1520-1530.	3.8	33
12	MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases. , 2015, , 1-33.		0
13	P621Bone morphogenetic protein 7 protects against pressure overload-induced left ventricular remodeling and facilitates its regression in mice. Cardiovascular Research, 2014, 103, S112.4-S112.	3.8	0
14	BAMBI (BMP and activin membrane-bound inhibitor) protects the murine heart from pressure-overload biomechanical stress by restraining TGF-β signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 323-335.	3.8	62
15	Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. International Journal of Cardiology, 2013, 167, 2875-2881.	1.7	126
16	Circulating Levels of miRâ€133a Predict the Regression Potential of Left Ventricular Hypertrophy After Valve Replacement Surgery in Patients With Aortic Stenosis. Journal of the American Heart Association, 2013, 2, e000211.	3.7	40
17	Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord μ-opioid receptors to Cαz protein subunits. Neuropharmacology, 2012, 62, 757-764.	4.1	8
18	Androgens Contribute to Sex Differences in Myocardial Remodeling under Pressure Overload by a Mechanism Involving TGF-β. PLoS ONE, 2012, 7, e35635.	2.5	46

ANA VICTORIA VILLAR

#	Article	IF	CITATIONS
19	Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis. Heart, 2011, 97, 1132-1137.	2.9	41
20	BAMBI (Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor) Reveals the Involvement of the Transforming Growth Factor-β Family in Pain Modulation. Journal of Neuroscience, 2010, 30, 1502-1511.	3.6	60
21	Gender differences of echocardiographic and gene expression patterns in human pressure overload left ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2009, 46, 526-535.	1.9	69
22	Plasma Levels of Transforming Growth Factor-β1 Reflect Left Ventricular Remodeling in Aortic Stenosis. PLoS ONE, 2009, 4, e8476.	2.5	57
23	Identification of a Novel Modulator of Thyroid Hormone Receptor-Mediated Action. PLoS ONE, 2007, 2, e1183.	2.5	42
24	Modulation of PI-Specific Phospholipase C by Membrane Curvature and Molecular Order. Biochemistry, 2005, 44, 11592-11600.	2.5	56
25	Phosphorylation of glycosyl-phosphatidylinositol by phosphatidylinositol 3-kinase changes its properties as a substrate for phospholipases. FEBS Letters, 2005, 579, 59-65.	2.8	7
26	Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes. Journal of Biological Chemistry, 2003, 278, 37169-37174.	3.4	107
27	Interaction of Phospholipases C and Sphingomyelinase with Liposomes. Methods in Enzymology, 2003, 372, 3-19.	1.0	18
28	Associations of B- and C-Raf with Cholesterol, Phosphatidylserine, and Lipid Second Messengers. Journal of Biological Chemistry, 2002, 277, 24090-24102.	3.4	90
29	Diacylglycerol effects on phosphatidylinositol-specific phospholipase C activity and vesicle fusion. FEBS Letters, 2001, 494, 117-120.	2.8	32
30	Purification and Characterization of Insulin-Mimetic Inositol Phosphoglycan-Like Molecules From Grass Pea (Lathyrus sativus) Seeds. Molecular Medicine, 2001, 7, 454-460.	4.4	13
31	Leaky Vesicle Fusion Induced by Phosphatidylinositol-Specific Phospholipase C: Observation of Mixing of Vesicular Inner Monolayersâ€. Biochemistry, 2000, 39, 14012-14018.	2.5	56
32	Towards the in vitro reconstitution of caveolae. Asymmetric incorporation of glycosylphosphatidylinositol (GPI) and gangliosides into liposomal membranes. FEBS Letters, 1999, 457, 71-74.	2.8	16
33	Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes. FEBS Letters, 1998, 432, 150-154.	2.8	13