Slawomir Sujecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 2014, 8, 830-834.	31.4	811
2	Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express, 2010, 18, 26704.	3.4	269
3	<i>C₃</i> ‣ymmetric Lanthanide Tris(alkoxide) Complexes Formed by Preferential Complexation and Their Stereoselective Polymerization of <i>rac</i> â€Lactide. Angewandte Chemie - International Edition, 2008, 47, 6033-6036.	13.8	150
4	Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy^3+, Pr^3+and Tb^3+. Optical Materials Express, 2012, 2, 1632.	3.0	97
5	Mid-infrared supercontinuum generation to 125μm in large NA chalcogenide step-index fibres pumped at 45μm. Optics Express, 2014, 22, 19169.	3.4	83
6	Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad. Optical Materials, 2014, 36, 1076-1082.	3.6	81
7	Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics. Optical Materials Express, 2015, 5, 1722.	3.0	79
8	Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Optical Materials Express, 2014, 4, 1444.	3.0	78
9	Ligand Recognition Processes in the Formation of Homochiral <i>C</i> ₃ â€5ymmetric LnL ₃ Complexes of a Chiral Alkoxide. Chemistry - A European Journal, 2009, 15, 8241-8250.	3.3	59
10	Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Optical Materials Express, 2015, 5, 870.	3.0	58
11	Nonlinear properties of tapered laser cavities. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 823-834.	2.9	57
12	Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 993-1008.	2.9	56
13	Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation. Optical and Quantum Electronics, 2010, 42, 69-79.	3.3	53
14	Superior photoluminescence (PL) of Pr^3+-In, compared to Pr^3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. Optics Express, 2014, 22, 21236.	3.4	50
15	Mid-infrared emission in Tb^3+-doped selenide glass fiber. Journal of the Optical Society of America B: Optical Physics, 2017, 34, A70.	2.1	48
16	Quasi-3-D simulation of high-brightness tapered lasers. IEEE Journal of Quantum Electronics, 2004, 40, 463-472.	1.9	44
17	Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating. Applied Physics Letters, 2008, 93, 211102.	3.3	42
18	Crystallization behavior of Dy3+-doped selenide glasses. Journal of Non-Crystalline Solids, 2011, 357, 2453-2462.	3.1	39

#	Article	IF	CITATIONS
19	Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre. Optical and Quantum Electronics, 2017, 49, 1.	3.3	31
20	Room temperature mid-infrared fiber lasing beyond 5  µm in chalcogenide glass small-core step index fiber. Optics Letters, 2021, 46, 3504.	3.3	31
21	Novel vectorial analysis of optical waveguides. Journal of Lightwave Technology, 1998, 16, 1329-1335.	4.6	26
22	Experimental Investigation of Mid-Infrared Laser Action From Dy ³⁺ Doped Fluorozirconate Fiber. IEEE Photonics Technology Letters, 2018, 30, 1083-1086.	2.5	26
23	Simulation of double quantum well GaInNAs laser diodes. IET Optoelectronics, 2007, 1, 259-265.	3.3	23
24	Design strategies to increase the brightness of gain guided tapered lasers. Optical and Quantum Electronics, 2008, 40, 175-189.	3.3	23
25	Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method. Optical and Quantum Electronics, 2017, 49, 1.	3.3	23
26	Structure related beam propagation. Optical and Quantum Electronics, 1999, 31, 689-703.	3.3	22
27	Ultra-Wideband WDM Optical Network Optimization. Photonics, 2020, 7, 16.	2.0	22
28	Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF). Optical Materials, 2017, 67, 98-107.	3.6	21
29	Optimization of Optical Networks Based on CDC-ROADM Technology. Applied Sciences (Switzerland), 2019, 9, 399.	2.5	20
30	Milliwatt-Level Spontaneous Emission Across the 3.5–8 µm Spectral Region from Pr3+ Doped Selenide Chalcogenide Fiber Pumped with a Laser Diode. Applied Sciences (Switzerland), 2020, 10, 539.	2.5	20
31	Ultra-broadband mid-infrared emission from a Pr ³⁺ /Dy ³⁺ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement [Invited]. Optical Materials Express, 2019, 9, 2291.	3.0	18
32	Novel beam propagation algorithms for tapered optical structures. Journal of Lightwave Technology, 1999, 17, 2379-2388.	4.6	17
33	The impact of nonequilibrium gain in a spectral laser diode model. Optical and Quantum Electronics, 2007, 38, 1019-1027.	3.3	16
34	Experimental observation of gain in a resonantly pumped Pr3+-doped chalcogenide glass mid-infrared fibre amplifier notwithstanding the signal excited-state absorption. Scientific Reports, 2019, 9, 11426.	3.3	16
35	Machine Learning Algorithms for Prediction of the Quality of Transmission in Optical Networks. Entropy, 2021, 23, 7.	2.2	16
36	Arbitrary truncation order three-point finite difference method for optical waveguides with stepwise refractive index discontinuities. Optics Letters, 2010, 35, 4115.	3.3	15

#	Article	IF	CITATIONS
37	Gain-switched Dy ³⁺ :ZBLAN fiber laser operating around 3 μm. JPhys Photonics, 2020, 2, 014003.	4.6	15
38	High Peak Power Q-switched Er:ZBLAN Fiber Laser. Journal of Lightwave Technology, 2021, 39, 6572-6578.	4.6	15
39	Multicore microstructured optical fibre for sensing applications. Optics Communications, 2015, 344, 71-76.	2.1	14
40	Modeling of resonantly pumped mid-infrared Pr ³⁺ -doped chalcogenide fiber amplifier with different pumping schemes. Optics Express, 2018, 26, 23641.	3.4	14
41	First Identification of Rareâ€Earth Oxide Nucleation in Chalcogenide Classes and Implications for Fabrication of Midâ€Infrared Active Fibers. Journal of the American Ceramic Society, 2014, 97, 432-441.	3.8	13
42	The dispersion characteristics of oblique coordinate beam propagation algorithms. Journal of Lightwave Technology, 1999, 17, 514-518.	4.6	12
43	Wide-angle, finite-difference beam propagation in oblique coordinate system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 138.	1.5	12
44	Volume Bragg grating external cavities for the passive phase locking of high-brightness diode laser arrays: theoretical and experimental study. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1289.	2.1	12
45	Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited). Optical and Quantum Electronics, 2015, 47, 1389-1395.	3.3	12
46	Experimental Investigation of Actively Q-Switched Er3+:ZBLAN Fiber Laser Operating at around 2.8 µm. Sensors, 2020, 20, 4642.	3.8	12
47	Vulnerability Management Models Using a Common Vulnerability Scoring System. Applied Sciences (Switzerland), 2021, 11, 8735.	2.5	12
48	Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm ³⁺ -doped selenide-chalcogenide glass fibers. Optics Express, 2020, 28, 12373.	3.4	12
49	Enhanced Brightness of Tapered Laser Diodes Based on an Asymmetric Epitaxial Design. IEEE Photonics Technology Letters, 2007, 19, 1640-1642.	2.5	11
50	Simple and efficient method of lines based algorithm for modeling of erbium doped Q-switched fluoride fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2288.	2.1	11
51	Comparative Modeling of Infrared Fiber Lasers. Photonics, 2018, 5, 48.	2.0	11
52	Spatiotemporal modeling of mid-infrared photoluminescence from terbium(III) ion doped chalcogenide-selenide multimode fibers. Journal of Rare Earths, 2019, 37, 1157-1163.	4.8	11
53	An Efficient Algorithm for Steady State Analysis of Fibre Lasers Operating under Cascade Pumping Scheme. International Journal of Electronics and Telecommunications, 2014, 60, 143-149.	0.6	11
54	Self-consistent electrical, thermal, and optical model of high-brightness tapered lasers. , 2002, , .		10

#	Article	IF	CITATIONS
55	The impact of hot-phonons on the performance of 1.3µm dilute nitride edge-emitting quantum well lasers. Journal of Physics: Conference Series, 2007, 92, 012068.	0.4	10
56	Polarization-maintaining erbium doped photonic crystal fiber laser. Laser Physics, 2012, 22, 240-247.	1.2	10
57	A Comparative Evaluation of Nature Inspired Algorithms for Telecommunication Network Design. Applied Sciences (Switzerland), 2020, 10, 6840.	2.5	10
58	Comparative study of praseodymium additives in active selenide chalcogenide optical fibers. Optical Materials Express, 2018, 8, 3910.	3.0	10
59	Improvement of the beam quality of a broad-area diode laser using asymmetric feedback from an external cavity. Optical and Quantum Electronics, 2008, 40, 1097-1102.	3.3	9
60	Numerical Analysis of Q-Switched Erbium Ion Doped Fluoride Glass Fiber Laser Operation Including Spontaneous Emission. Applied Sciences (Switzerland), 2018, 8, 803.	2.5	9
61	Modelling and Design of Lanthanide Ion-Doped Chalcogenide Fiber Lasers: Progress towards the Practical Realization of the First MIR Chalcogenide Fiber Laser. Fibers, 2018, 6, 25.	4.0	9
62	Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission inÂPr3+ doped selenide-chalcogenide fiber. Journal of Luminescence, 2019, 209, 14-20.	3.1	9
63	Optical properties of tapered laser cavities. IEE Proceedings: Optoelectronics, 2003, 150, 246-252.	0.8	8
64	Stability of steady-state high-power semiconductor laser models. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1053.	2.1	8
65	Modeling of Burst Mode 2R Optical Regenerator Cascades for Long-Haul Optical Networks. Journal of Optical Communications and Networking, 2012, 4, 304.	4.8	8
66	The local environment of Dy3+in selenium-rich chalcogenide glasses. RSC Advances, 2014, 4, 42364-42371.	3.6	8
67	Infrared Laser Application to Wood Cutting. Materials, 2020, 13, 5222.	2.9	8
68	Modeling of patterned contacts in tapered lasers. IEEE Journal of Quantum Electronics, 2004, 40, 1384-1388.	1.9	7
69	Efficient Algorithm for Providing Live Vulnerability Assessment in Corporate Network Environment. Applied Sciences (Switzerland), 2020, 10, 7926.	2.5	7
70	Clarinet laser: Semiconductor laser design for high-brightness applications. Applied Physics Letters, 2005, 87, 101104.	3.3	6
71	Quantitative imaging of intracavity spontaneous emission distributions using tapered lasers fabricated with windowed n-contacts. IEE Proceedings: Optoelectronics, 2006, 153, 2-7.	0.8	6
72	Inclusion of thermal boundary resistance in the simulation of high-power 980Ânm ridge waveguide lasers. Optical and Quantum Electronics, 2008, 40, 373-377.	3.3	6

#	Article	IF	CITATIONS
73	Numerical and experimental investigation of NIR-to-visible energy up-conversion in Er3+-doped sol–gel SiO2 powders. Journal of Materials Chemistry C, 2013, 1, 8075.	5.5	6
74	Towards the mid-infrared optical biopsy. Proceedings of SPIE, 2016, , .	0.8	6
75	Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources. Optical and Quantum Electronics, 2018, 50, 1.	3.3	6
76	Measurement of optical gain, effective group index and linewidth enhancement factor in 1.3â€Âµm dilute nitride double-quantum-well lasers. IET Optoelectronics, 2007, 1, 284-288.	3.3	5
77	Thermal performance investigation of DQW GalnNAs laser diodes. Optical and Quantum Electronics, 2008, 40, 385-390.	3.3	5
78	The effect of the nature of the rare earth additive on chalcogenide glass stability. Proceedings of SPIE, 2011, , .	0.8	5
79	True mid-infrared Pr ³⁺ absorption cross-section in a selenide-chalcogenide host-glass. , 2016, , .		5
80	Challenges and future trends in fiber lasers. , 2016, , .		5
81	Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers. Journal of Luminescence, 2018, 199, 112-115.	3.1	5
82	Distributed Analysis Tool for Vulnerability Prioritization in Corporate Networks. , 2020, , .		5
83	Automatic CVSS-based Vulnerability Prioritization and Response with Context Information. , 2021, , .		5
84	High brightness tapered lasers at 732 nm and 975 nm: experiments and numerical analysis. , 0, , .		4
85	Improved performance evaluation for DC-coupled burst mode reception in the presence of amplified spontaneous emission noise and interchannel crosstalk. IET Optoelectronics, 2010, 4, 121-132.	3.3	4
86	Theoretical investigation of the role of optically induced carrier pulsations in wave mixing in semiconductor optical amplifiers. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 168.	2.1	4
87	Modelling of chalcogenide glass fibre lasers for MIR generation. , 2012, , .		4
88	Extended Taylor series and interpolation of physically meaningful functions. Optical and Quantum Electronics, 2013, 45, 53-66.	3.3	4
89	Numerical investigation of mid-infrared emission from Pr \$\$^{3+}\$\$ 3 + doped GeAsGaSe fibre. Optical and Quantum Electronics, 2014, 46, 593-602.	3.3	4
90	Towards supercontinuum-driven hyperspectral microscopy in the mid-infrared. Proceedings of SPIE, 2016, , .	0.8	4

#	Article	IF	CITATIONS
91	Resource Optimization in Fully Flexible Optical Node Architectures. , 2018, , .		4
92	Quasi-3D optoelectronic modelling of 730 nm tapered laser diodes. , 0, , .		3
93	Fourier transform analysis method for modeling the positions and properties of cavity defects in Fabry–Pérot laser diodes. Applied Physics Letters, 2005, 86, 061104.	3.3	3
94	Numerical modeling of high-power self-organizing external cavity lasers. Optical and Quantum Electronics, 2008, 40, 1117-1121.	3.3	3
95	Static and dynamic performance optimisation of a 1.3Âμm GaInNAs ridge waveguide laser. Optical and Quantum Electronics, 2008, 40, 1181-1186.	3.3	3
96	Performance analysis of optically preamplified DC oupled burst mode receivers. European Transactions on Telecommunications, 2009, 20, 281-286.	1.2	3
97	Accuracy of three-point finite difference approximations for optical waveguides with step-wise refractive index discontinuities. Opto-electronics Review, 2011, 19, .	2.4	3
98	Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber. Proceedings of SPIE, 2014, , .	0.8	3
99	Introduction to the special issue on numerical simulation of optoelectronic devices NUSOD'14. Optical and Quantum Electronics, 2015, 47, 1291-1292.	3.3	3
100	The Modelling of Fibre Lasers for Mid-Infrared Wavelengths. Springer Series in Optical Sciences, 2017, , 39-75.	0.7	3
101	Machine Learning Algorithms for Conversion of CVSS Base Score from 2.0 to 3.x. Lecture Notes in Computer Science, 2021, , 255-269.	1.3	3
102	Application of ML Algorithms for Prediction of the QoT in Optical Networks with Imbalanced and Incomplete Data. , 2021, , .		3
103	Conversion of CVSS Base Score from 2.0 to 3.1. , 2021, , .		3
104	Hot-cavity modelling of high-power tapered laser diodes using wide-angle 3D FD-BPM. , 0, , .		2
105	A thermal model for silicon-on-insulator-based waveguide modulators. , 0, , .		2
106	Beam filamentation and maximum optical power in high-brightness tapered lasers. , 2003, , .		2
107	Imaging of spontaneous emission from 980 nm tapered lasers with windowed N-contacts. EPJ Applied Physics, 2004, 27, 455-459.	0.7	2
108	Generalized rectangular finite difference beam propagation method. Applied Optics, 2008, 47, 4280.	2.1	2

#	Article	IF	CITATIONS
109	Experimental verification of the existence of optically induced carrier pulsations in SOAs. Optics Communications, 2010, 283, 1481-1484.	2.1	2
110	Performance evaluation for 2R burst mode optical regenerator cascades in presence of co-channel phase uncorrelated crosstalk. , 2012, , .		2
111	Factors influencing the brightness and beam quality of tapered laser diodes and bars. , 2012, , .		2
112	Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber. Proceedings of SPIE, 2014, , .	0.8	2
113	A simple technique for calculation of numerical integration errors for physically meaningful functions. Afrika Matematika, 2014, 25, 53-65.	0.8	2
114	Development of praseodymium-doped, selenide chalcogenide glass, step-index fibre towards mid-infrared fibre lasers. , 2014, , .		2
115	Characterising refractive index dispersion in chalcogenide glasses. , 2016, , .		2
116	Container Based Analysis Tool for Vulnerability Prioritization in Cyber Security Systems. , 2019, , .		2
117	Modeling Demands Forecasts with Probability Distributions in DWDM Optical Networks. , 2021, , .		2
118	Two asymmetrical optical rib waveguides. , 2000, 4239, 235.		1
119	Design of high power pump lasers for C-band EDFA amplifiers. , 0, , .		1
120	Bent waveguide cavities. , 2005, , .		1
121	Losses of the unstable cavity in tapered laser diodes: estimation from numerical simulations. , 0, , .		1
122	Numerically efficient representation of anisotropic valence bands in semiconductor quantum-well optoelectronic devices. IEEE Photonics Technology Letters, 2006, 18, 1374-1376.	2.5	1
123	Investigation of non-equilibrium steady-state gain in semiconductor quantum wells. IEE Proceedings: Optoelectronics, 2006, 153, 299-307.	0.8	1
124	Thermal performance investigation of DQW GaInNAs laser diodes. , 2007, , .		1
125	An investigation of thermal boundary resistance in 1.3 µm edgeâ€emitting dilute nitride quantum well laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 485-489.	0.8	1
126	Thermally dependent gain of 1.3 µm dilute nitride double quantum well lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 490-494.	0.8	1

#	Article	IF	CITATIONS
127	Numerical emulation of the degradation of 975nm high power tapered laser bars. , 2009, , .		1
128	External-cavity designs for phase-coupled laser diode arrays. , 2009, , .		1
129	Reliability assessment and degradation analysis of 1.3â€,μm GaInNAs lasers. Journal of Applied Physics, 2009, 106, 093110.	2.5	1
130	Erbium doped photonic crystal fibre laser. , 2011, , .		1
131	Optoelectronic properties of InAs/GaSb superlattices with asymmetric interfaces. Journal of Physics: Conference Series, 2012, 367, 012014.	0.4	1
132	Sensing capability of multicore fibre. , 2014, , .		1
133	Numerical modelling of erbium (III) doped Q-switched fibre lasers. , 2015, , .		1
134	Spectroscopy of mid-infrared (4.8µm) photoluminescence in Tb ³⁺ doped chalcogenide glass and fibre. , 2015, , .		1
135	Numerical modelling of Tb ³⁺ doped selenide-chalcogenide multimode fibre based spontaneous emission sources. , 2017, , .		1
136	Modelling chaos in asymmetric optical fibres. , 2017, , .		1
137	Single- And Double-Mode Light Generation in DFB Fiber Laser: Wavelength-Scale Electromagnetic Modelling by the Method of Single Expression. , 2018, , .		1
138	Bright Mid-Infrared (MIR) Photoluminescence Sources and their Application in Imaging and Sensing. , 2020, , .		1
139	Modeling Traffic Forecasts with Probability in DWDM Optical Networks. Lecture Notes in Computer Science, 2021, , 365-378.	1.3	1
140	Mid-infrared sources, based on chalcogenide glass fibres, for biomedical diagnostics. , 2021, , .		1
141	Review of Recent Progress Towards Mid-Infrared Fiber Lasers for 4-9 μm Window. , 2017, , .		1
142	A study of MIR photoluminescence from Pr3+ doped chalcogenide fibers pumped at near-infrared wavelengths. , 2017, , .		1
143	Application of machine learning methods in provisioning of DWDM channels. , 2019, , .		1
144	Pulsed fluoride glass fiber laser with near 3 \hat{A} µm operating wavelength. , 2020, , .		1

#	Article	lF	CITATIONS
145	Learning to Classify DWDM Optical Channels from Tiny and Imbalanced Data. Entropy, 2021, 23, 1504.	2.2	1
146	Finite difference methods in optoelectronic simulation. , 0, , .		0
147	Beam propagation analysis of non-linear tapers. , 0, , .		Ο
148	New Beam Propagation Algorithm for Optical Tapers. AEU - International Journal of Electronics and Communications, 2001, 55, 185-190.	2.9	0
149	Wide angle oblique beam propagation. , 0, , .		Ο
150	Analysis of beam quality limitations in high brightness gain guided tapered lasers. , 0, , .		0
151	Optimization of epitaxial layer design for high brightness tapered lasers. , 2005, , .		Ο
152	Design and fabrication of high brightness semiconductor tapered lasers with a clarinet-like shape. , 0, , .		0
153	Energy band calculations for dynamic gain models in semiconductor quantum well lasers. , 0, , .		Ο
154	Modeling of High Power Semiconductor Lasers. , 2006, , .		0
155	The Impact of Nonequilibrium Gain in a Spectral Laser Model. , 2006, , .		Ο
156	High power 980 nm tapered lasers with separate contacts: numerical simulation and comparison with experiments. , 2007, , .		0
157	Simulation of Tapered Lasers with Separate Contacts. , 2007, , .		0
158	Thermal Boundary Resistance in Optoelectronic Devices. , 2007, , .		0
159	Static and dynamic performance optimisation of a 1.3 μm GalnNAs ridge waveguide laser. , 2008, , .		Ο
160	Un-cooled 10 Gb/s dilute-nitride optical transmitters for the 1300 nm wavelength range. , 2008, , .		0
161	Self-orgaizing external cavity laser diodes. , 2009, , .		0
162	Numerical modeling of photorefractive crystals for self-adapting external cavity laser mirrors. Optical and Quantum Electronics, 2009, 41, 681-688.	3.3	0

#	Article	IF	CITATIONS
163	Wavelength-stabilized tapered laser diodes in an external Talbot cavity: simulations and experiments. , 2009, , .		0
164	Spectroscopic simulation of tapered laser diodes. , 2009, , .		0
165	Asymmetric feedback external cavity laser diodes: Comparison of experiment and simulation. , 2009, , .		0
166	Theoretical and experimental study of erbium doped photonic crystal fiber ring laser. , 2011, , .		0
167	Optimization of erbium doped photonic crystal fiber laser. , 2011, , .		Ο
168	Introduction to the OQE special issue on Numerical Simulation of Optoelectronic Devices NUSOD'10. Optical and Quantum Electronics, 2011, 42, 657-658.	3.3	0
169	Numerical and experimental investigation of upconversion in Er doped sol-gel SiO <inf>2</inf> . , 2011, ,		Ο
170	Highly birefringent microstructured neodymium doped fiber. , 2012, , .		0
171	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD'12. Optical and Quantum Electronics, 2013, 45, 571-571.	3.3	Ο
172	Numerical and experimental investigation of near-infrared-visible luminescence in erbium doped sol-gel SiO <inf>2</inf> ., 2013, , .		0
173	Neodymium-doped highly birefringent microstructure fiber laser. Laser Physics, 2013, 23, 085107.	1.2	Ο
174	Application of Extended Taylor Series based Finite Difference Method in photonics. , 2013, , .		0
175	Erbium doped highly birefringent microstructure fiber. , 2013, , .		Ο
176	Modelling and design of MIR chalcogenide glass fibre lasers. , 2014, , .		0
177	Photoluminescence modelling of lanthanide doped, low phonon energy glasses. , 2014, , .		Ο
178	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD'13. Optical and Quantum Electronics, 2014, 46, 1187-1187.	3.3	0
179	Design of erbium doped double clad ZBLAN Fibre laser. Journal of Physics: Conference Series, 2015, 619, 012044.	0.4	0
180	Mid-Infrared Supercontinuum Generation Spanning More Than 11 \hat{l} 4m in a Chalcogenide Step-Index Fiber. , 2015, , .		0

11

#	Article	IF	CITATIONS
181	Stability analysis of FD-BPM applied in high power semiconductor laser models. Optical and Quantum Electronics, 2015, 47, 1415-1419.	3.3	Ο
182	Multiwavelength erbium ring laser based on multicore fibre. , 2016, , .		0
183	Numerical modelling of lanthanide-ion doped fibre lasers operating within mid-infrared wavelength region. , 2016, , .		0
184	Modelling of multimode selenide-chalcogenide glass fibre based mir spontaneous emission sources. , 2017, , .		0
185	Time Domain Modeling of Multimode Selenide-Chalcogenide Glass Fiber Based Mid Infrared Spontaneous Emission Sources. , 2018, , .		Ο
186	Single-Mode Light Generation in DFB Fiber Laser: Wavelength-Scale Electromagnetic Modelling by the Method of Single Expression. , 2018, , .		0
187	Multimode Selenide-Chalcogenide Glass Fiber-Based MIR Spontaneous Emission Sources with Shaped Output Spectrum. , 2019, , .		Ο
188	Fluoride Fiber Lasers Operating at Wavelengths near 3 Micrometers. , 2020, , .		0
189	Application of fluoride fiber laser devices operating at wavelengths near 3 micrometers. , 2021, , .		Ο
190	Comparative study of infrared fiber laser models. , 2018, , .		0
191	Numerical modelling of pulse formation in Er3+-doped Q-switched fluoride glass fiber lasers. , 2018, , .		0
192	Breaking Through the Wavelength Barrier: State-of-play on Rare-earth Ion Mid-infrared Fiber Lasers at 4-9 µm. , 2019, , .		0
193	Modeling propagation in large deformed step-index fibers using a finite operator method. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1208.	2.1	Ο
194	Application of evolutionary algorithm to optimization of DWDM networks. , 2019, , .		0
195	Experimental investigation of mid-infrared Er:ZBLAN fiber laser. Photonics Letters of Poland, 2020, 12, 73.	0.4	Ο
196	Breaking through the wavelength barrier: The state-of-play on rare-earth ion, mid-infrared fiber lasers for the 4–10 I¼m wavelength region. , 2022, , 401-502.		0