
Richard L Lindroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinated resource allocation to plant growth–defense tradeoffs. New Phytologist, 2022, 233, 1051-1066.	7.3	63
2	Polyploidy and growth—defense tradeoffs in natural populations of western quaking Aspen. Journal of Chemical Ecology, 2022, 48, 431-440.	1.8	5
3	Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 2022, 199, 119-128.	2.0	5
4	Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. Global Change Biology, 2022, 28, 4684-4700.	9.5	6
5	Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. Annals of Botany, 2021, 127, 505-517.	2.9	25
6	Spatial, genetic and biotic factors shape within rown leaf trait variation and herbivore performance in a foundation tree species. Functional Ecology, 2021, 35, 54-66.	3.6	10
7	Salicinoid phenolics reduce adult Anoplophora glabripennis (Cerambicidae: Lamiinae) feeding and egg production. Arthropod-Plant Interactions, 2021, 15, 127-136.	1.1	3
8	Trait plasticity and tradeâ€offs shape intraâ€specific variation in competitive response in a foundation tree species. New Phytologist, 2021, 230, 710-719.	7.3	17
9	Root Secondary Metabolites in Populus tremuloides: Effects of Simulated Climate Warming, Defoliation, and Genotype. Journal of Chemical Ecology, 2021, 47, 313-321.	1.8	9
10	Heterozygous Trees Rebound the Fastest after Felling by Beavers to Positively Affect Arthropod Community Diversity. Forests, 2021, 12, 694.	2.1	3
11	Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species. Forests, 2021, 12, 877.	2.1	6
12	Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores. Ecology, 2021, 102, e03461.	3.2	7
13	Growth–defense trade-offs shape population genetic composition in an iconic forest tree species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
14	Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts. Ecology and Evolution, 2020, 10, 10532-10542.	1.9	2
15	Phenological responses to prior-season defoliation and soil-nutrient availability vary among early- and late-flushing aspen (Populus tremuloides Michx.) genotypes. Forest Ecology and Management, 2020, 458, 117771.	3.2	5
16	The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1. Plant Physiology, 2020, 183, 137-151.	4.8	12
17	To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species. Oecologia, 2020, 192, 893-907.	2.0	10
18	Response of aspen genotypes to browsing damage is not influenced by soil community diversity. Plant and Soil 2020, 452, 153-170	3.7	1

#	Article	IF	CITATIONS
19	Chemical defense over decadal scales: Ontogenetic allocation trajectories and consequences for fitness in a foundation tree species. Functional Ecology, 2019, 33, 2105-2115.	3.6	20
20	Genetic variation in tree leaf chemistry predicts the abundance and activity of autotrophic soil microorganisms. Ecosphere, 2019, 10, e02795.	2.2	5
21	Divergent host plant utilization by adults and offspring is related to intraâ€plant variation in chemical defences. Journal of Animal Ecology, 2019, 88, 1789-1798.	2.8	8
22	Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition. Molecular Ecology, 2019, 28, 4404-4421.	3.9	25
23	Analysis of condensed tannins in Populus spp. using reversed phase UPLCâ€PDAâ€(â^')esiâ€MS following thiolytic depolymerisation. Phytochemical Analysis, 2019, 30, 257-267.	2.4	8
24	Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A metaâ€analysis with Salicaceae. Functional Ecology, 2019, 33, 422-435.	3.6	34
25	Genetic down-regulation of gibberellin results in semi-dwarf poplar but few non-target effects on chemical resistance and tolerance to defoliation. Journal of Plant Ecology, 2019, 12, 124-136.	2.3	6
26	Large effect quantitative trait loci for salicinoid phenolic glycosides in Populus : Implications for gene discovery. Ecology and Evolution, 2018, 8, 3726-3737.	1.9	6
27	Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction. Journal of Chemical Ecology, 2018, 44, 1045-1050.	1.8	5
28	Genetic variation in aspen phytochemical patterns structures windows of opportunity for gypsy moth larvae. Oecologia, 2018, 187, 471-482.	2.0	18
29	Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS ONE, 2018, 13, e0200954.	2.5	33
30	Purification and Analysis of Salicinoids. Current Analytical Chemistry, 2018, 14, 423-429.	1.2	15
31	Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions. Plant, Cell and Environment, 2017, 40, 2743-2753.	5.7	13
32	Small mammal activity alters plant community composition and microbial activity in an oldâ€field ecosystem. Ecosphere, 2017, 8, e01777.	2.2	22
33	Effects of Elevated Atmospheric Carbon Dioxide and Tropospheric Ozone on Phytochemical Composition of Trembling Aspen (Populus tremuloides) and Paper Birch (Betula papyrifera). Journal of Chemical Ecology, 2017, 43, 26-38.	1.8	22
34	Genetic Modification of Lignin in Hybrid Poplar (Populus alba × Populus tremula) Does Not Substantially Alter Plant Defense or Arthropod Communities. Journal of Insect Science, 2017, 17, .	1.5	4
35	Supercooling points of diapausing forest tent caterpillar (Lepidoptera: Lasiocampidae) eggs. Canadian Entomologist, 2016, 148, 512-519.	0.8	8
36	Spectroscopic determination of ecologically relevant plant secondary metabolites. Methods in Ecology and Evolution, 2016, 7, 1402-1412.	5.2	88

#	Article	IF	CITATIONS
37	Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. Plant, Cell and Environment, 2016, 39, 222-230.	5.7	69

Phytochemical traits underlie genotypic variation in susceptibility of quaking aspen (<i>Populus) Tj ETQq0 0 0 rgBT $_{4.0}^{\prime}$ verlock 10 Tf 50 7

39	Host genetics and environment shape fungal pathogen incidence on a foundation forest tree species, <i>Populus tremuloides</i> . Canadian Journal of Forest Research, 2016, 46, 1167-1172.	1.7	4
40	Growth and chemical responses of trembling aspen to simulated browsing and ungulate saliva. Journal of Plant Ecology, 2016, 9, 474-484.	2.3	11
41	Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere – Herbivore Interface. Journal of Chemical Ecology, 2016, 42, 193-201.	1.8	39
42	Heterozygosity, gender, and the growth-defense trade-off in quaking aspen. Oecologia, 2016, 181, 381-390.	2.0	17
43	Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management, 2016, 362, 241-250.	3.2	50
44	Condensed tannins increase nitrogen recovery by trees following insect defoliation. New Phytologist, 2015, 208, 410-420.	7.3	54
45	Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Global Change Biology, 2015, 21, 2698-2710.	9.5	69
46	Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response. Arthropod-Plant Interactions, 2015, 9, 85-95.	1.1	2
47	Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides). Journal of Chemical Ecology, 2015, 41, 651-661.	1.8	36
48	Aspen Defense Chemicals Influence Midgut Bacterial Community Composition of Gypsy Moth. Journal of Chemical Ecology, 2015, 41, 75-84.	1.8	50
49	Herbivoreâ€mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. New Phytologist, 2014, 204, 397-407.	7.3	23
50	A High-Resolution Genetic Map of Yellow Monkeyflower Identifies Chemical Defense QTLs and Recombination Rate Variation. G3: Genes, Genomes, Genetics, 2014, 4, 813-821.	1.8	33
51	Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus. Tree Physiology, 2014, 34, 1240-1251.	3.1	19
52	Root Chemistry in Populus tremuloides: Effects of Soil Nutrients, Defoliation, and Genotype. Journal of Chemical Ecology, 2014, 40, 31-38.	1.8	12
53	Atmospheric change alters frass quality of forest canopy herbivores. Arthropod-Plant Interactions, 2014, 8, 33-47.	1.1	14
54	Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130194.	4.0	73

Richard L Lindroth

#	Article	IF	CITATIONS
55	Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia, 2014, 175, 1041-1049.	2.0	92
56	Phenylpropanoid glycosides of Mimulus guttatus (yellow monkeyflower). Phytochemistry Letters, 2014, 10, 132-139.	1.2	18
57	Elevated carbon dioxide and ozone have weak, idiosyncratic effects on herbivorous forest insect abundance, species richness, and community composition. Insect Conservation and Diversity, 2014, 7, 553-562.	3.0	11
58	Patterns of Phytochemical Variation in Mimulus guttatus (Yellow Monkeyflower). Journal of Chemical Ecology, 2013, 39, 525-536.	1.8	37
59	Rapid phytochemical analysis of birch (Betula) and poplar (Populus) foliage by near-infrared reflectance spectroscopy. Analytical and Bioanalytical Chemistry, 2013, 405, 1333-1344.	3.7	34
60	Impacts of Atmospheric Change on Tree–Arthropod Interactions. Developments in Environmental Science, 2013, 13, 227-248.	0.5	8
61	Transgenerational effects of herbivory in a group of longâ€lived tree species: maternal damage reduces offspring allocation to resistance traits, but not growth. Journal of Ecology, 2013, 101, 1062-1073.	4.0	24
62	Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest Ecology and Management, 2013, 299, 14-21.	3.2	131
63	Influence of Global Atmospheric Change on the Feeding Behavior and Growth Performance of a Mammalian Herbivore, Microtus ochrogaster. PLoS ONE, 2013, 8, e72717.	2.5	2
64	Atmospheric change, plant secondary metabolites and ecological interactions. , 2012, , 120-153.		33
65	Arthropod community similarity in clonal stands of aspen: A test of the genetic similarity rule. Ecoscience, 2012, 19, 48-58.	1.4	4
66	Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia, 2012, 170, 695-707.	2.0	77
67	Genotype and soil nutrient environment influence aspen litter chemistry and in-stream decomposition. Freshwater Science, 2012, 31, 1244-1253.	1.8	31
68	Consequences of Climate Warming and Altered Precipitation Patterns for Plant-Insect and Multitrophic Interactions. Plant Physiology, 2012, 160, 1719-1727.	4.8	279
69	Atmospheric change alters performance of an invasive forest insect. Global Change Biology, 2012, 18, 3543-3557.	9.5	35
70	Genotypic Differences and Prior Defoliation Affect Re-Growth and Phytochemistry after Coppicing in Populus tremuloides. Journal of Chemical Ecology, 2012, 38, 306-314.	1.8	10
71	Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides. Oecologia, 2012, 169, 905-913.	2.0	16
72	Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia, 2012, 168, 863-876.	2.0	48

#	Article	IF	CITATIONS
73	Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos, 2011, 120, 1696-1704.	2.7	63
74	Qualitative Variation in Proanthocyanidin Composition of Populus Species and Hybrids: Genetics is the Key. Journal of Chemical Ecology, 2011, 37, 57-70.	1.8	47
75	Forest gene diversity is correlated with the composition and function of soil microbial communities. Population Ecology, 2011, 53, 35-46.	1.2	55
76	Rising concentrations of atmospheric CO ₂ have increased growth in natural stands of quaking aspen (<i>Populus tremuloides</i>). Global Change Biology, 2010, 16, 2186-2197.	9.5	85
77	Increased nitrogen availability influences predator–prey interactions by altering host-plant quality. Chemoecology, 2010, 20, 277-284.	1.1	55
78	Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics. Journal of Chemical Ecology, 2010, 36, 2-21.	1.8	228
79	Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO2 and O3. Plant and Soil, 2010, 336, 75-85.	3.7	23
80	Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biology and Biochemistry, 2010, 42, 1132-1137.	8.8	38
81	Performance of the invasive weevil <i>Polydrusus sericeus</i> is influenced by atmospheric CO ₂ and host species. Agricultural and Forest Entomology, 2010, 12, 285-292.	1.3	11
82	Effects of genotype, elevated CO ₂ and elevated O ₃ on aspen phytochemistry and aspen leaf beetle <i>Chrysomela crotchi</i> performance. Agricultural and Forest Entomology, 2010, 12, 267-276.	1.3	15
83	Individual growth rates do not predict aphid population densities under altered atmospheric conditions. Agricultural and Forest Entomology, 2010, 12, 293-299.	1.3	6
84	The Impact of Genomics on Advances in Herbivore Defense and Secondary Metabolism in Populus. , 2010, , 279-305.		22
85	A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast- and slow-growing Populus hybrid clones. Journal of Experimental Botany, 2009, 60, 3443-3452.	4.8	38
86	Climate Change and Temporal and Spatial Mismatches in Insect Communities. , 2009, , 215-231.		17
87	Incidence of Venturia shoot blight in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochemical Systematics and Ecology, 2009, 37, 139-145.	1.3	44
88	Genetic mosaics of ecosystem functioning across aspen-dominated landscapes. Oecologia, 2009, 160, 119-127.	2.0	61
89	Behavioral archives link the chemistry and clonal structure of trembling aspen to the food choice of North American porcupine. Oecologia, 2009, 160, 687-695.	2.0	23
90	Removal of invasive shrubs reduces exotic earthworm populations. Biological Invasions, 2009, 11, 663-671.	2.4	64

#	Article	IF	CITATIONS
91	Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity. Arthropod-Plant Interactions, 2009, 3, 249-258.	1.1	21
92	Independent, Interactive, and Species-Specific Responses of Leaf Litter Decomposition to Elevated CO2 and O3 in a Northern Hardwood Forest. Ecosystems, 2008, 11, 505-519.	3.4	63
93	From Genes to Ecosystems: The Genetic Basis of Condensed Tannins and Their Role in Nutrient Regulation in a Populus Model System. Ecosystems, 2008, 11, 1005-1020.	3.4	163
94	Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conservation and Diversity, 2008, 1, 233-241.	3.0	55
95	Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak. Agricultural and Forest Entomology, 2008, 10, 399-410.	1.3	48
96	Aspen Decline, Aspen Chemistry, and Elk Herbivory: Are They Linked?. Rangelands, 2008, 30, 17-21.	1.9	48
97	GENETICS, ENVIRONMENT, AND THEIR INTERACTION DETERMINE EFFICACY OF CHEMICAL DEFENSE IN TREMBLING ASPEN. Ecology, 2007, 88, 729-739.	3.2	110
98	Interactive effects of condensed tannin and cellulose additions on soil respiration. Canadian Journal of Forest Research, 2007, 37, 2063-2067.	1.7	20
99	Extrafloral Nectaries in Aspen (Populus tremuloides): Heritable Genetic Variation and Herbivore-induced Expression. Annals of Botany, 2007, 100, 1337-1346.	2.9	48
100	Forest understory clover populations in enriched CO2 and O3 atmospheres: Interspecific, intraspecific, and indirect effects. Environmental and Experimental Botany, 2007, 59, 340-346.	4.2	9
101	Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biology and Biochemistry, 2007, 39, 1192-1201.	8.8	62
102	Resistance and tolerance in Populus tremuloides: genetic variation, costs, and environmental dependency. Evolutionary Ecology, 2007, 21, 829-847.	1.2	113
103	Browse Quality in Quaking Aspen (Populus tremuloides): Effects of Genotype, Nutrients, Defoliation, and Coppicing. Journal of Chemical Ecology, 2007, 33, 1049-1064.	1.8	36
104	Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection. Biological Invasions, 2007, 9, 715-722.	2.4	56
105	Modeling nitrogen flux by larval insect herbivores from a temperate hardwood forest. Oecologia, 2007, 153, 833-843.	2.0	13
106	Tri-trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry. Oikos, 2006, 114, 507-517.	2.7	33
107	Competition―and resourceâ€mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytologist, 2006, 169, 561-570.	7.3	139
108	Genomeâ€wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist, 2006, 172, 47-62.	7.3	271

#	Article	IF	CITATIONS
109	A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 2006, 7, 510-523.	16.3	911
110	Age-Related Shifts in Leaf Chemistry of Clonal Aspen (Populus tremuloides). Journal of Chemical Ecology, 2006, 32, 1415-1429.	1.8	152
111	Developmental Trajectories in Cottonwood Phytochemistry. Journal of Chemical Ecology, 2006, 32, 2269-2285.	1.8	69
112	Genetic Identity of Populus tremuloides Litter Influences Decomposition and Nutrient Release in a Mixed Forest Stand. Ecosystems, 2006, 9, 528-537.	3.4	162
113	Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia, 2006, 148, 293-303.	2.0	137
114	Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecology Letters, 2005, 9, 051122062725008.	6.4	132
115	CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biology, 2005, 11, 588-599.	9.5	62
116	Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres. Global Change Biology, 2005, 11, 051013014052002-???.	9.5	28
117	Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia, 2005, 145, 297-305.	2.0	88
118	Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Canadian Journal of Botany, 2005, 83, 356-361.	1.1	119
119	Herbivory in a World of Elevated CO2. , 2005, , 468-486.		4
120	Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) Performance in Relation to Variable Phytochemistry in Juvenile Aspen (<i>Populus tremuloides</i> Michx.). Environmental Entomology, 2004, 33, 1505-1511.	1.4	44
121	Genetically based trait in a dominant tree affects ecosystem processes. Ecology Letters, 2004, 7, 127-134.	6.4	327
122	Transgenerational phenotypic plasticity under future atmospheric conditions. Ecology Letters, 2004, 7, 941-946.	6.4	29
123	Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biology, 2004, 10, 1414-1423.	9.5	67
124	Divergent pheromone-mediated insect behaviour under global atmospheric change. Global Change Biology, 2004, 10, 1820-1824.	9.5	49
125	Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Global Change Biology, 2004, 10, 1666-1677.	9.5	45
126	Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance. Oecologia, 2004, 139, 55-65.	2.0	86

#	Article	IF	CITATIONS
127	BEAVERS AS MOLECULAR GENETICISTS: A GENETIC BASIS TO THE FORAGING OF AN ECOSYSTEM ENGINEER. Ecology, 2004, 85, 603-608.	3.2	113
128	Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia, 2003, 134, 95-103.	2.0	88
129	Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2 , O 3 , and plant genotype. Oecologia, 2003, 137, 233-244.	2.0	137
130	Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26.	1.3	52
131	COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE. Ecology, 2003, 84, 559-573.	3.2	594
132	Altered growth and fine root chemistry of Betula papyrifera and Acer saccharum under elevated CO2. Canadian Journal of Forest Research, 2003, 33, 842-846.	1.7	7
133	Keeping the Faith. Frontiers in Ecology and the Environment, 2003, 1, 179.	4.0	0
134	Effects of Paper Birch Condensed Tannin on Whitemarked Tussock Moth (Lepidoptera: Lymantriidae) Performance. Environmental Entomology, 2002, 31, 10-14.	1.4	35
135	Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Tree Physiology, 2002, 22, 435-448.	3.1	23
136	Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 2002, 8, 1-16.	9.5	1,956
137	Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance. Agricultural and Forest Entomology, 2002, 4, 315-323.	1.3	29
138	Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 2002, 420, 403-407.	27.8	275
139	Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution, 2001, 115, 395-404.	7.5	113
140	Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia, 2001, 126, 371-379.	2.0	68
141	Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. , 2001, 27, 1289-1313.		173
142	Co2and O3Effects on Paper Birch (Betulaceae:Betula papyrifera) Phytochemistry and Whitemarked Tussock Moth (Lymantriidae:Orgyia leucostigma) Performance. Environmental Entomology, 2001, 30, 1119-1126.	1.4	39
143	Secondary Plant Compounds in Seedling and Mature Aspen (Populus tremuloides) in Yellowstone National Park, Wyoming. American Midland Naturalist, 2001, 145, 299-308.	0.4	30
144	Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 2000, 88, 259-272.	2.7	119

#	Article	IF	CITATIONS
145	Within- and between-year variation in early season phytochemistry of quaking aspen (Populus) Tj ETQq1 1 0.784	314 rgBT /	Oygrlock 10
146	Effects of Phenolic Glycosides and Protein on Gypsy Moth (Lepidoptera: Lymantriidae) and Forest Tent Caterpillar (Lepidoptera: Lasiocampidae) Performance and Detoxication Activities. Environmental Entomology, 2000, 29, 1108-1115.	1.4	72
147	Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecological Entomology, 2000, 25, 197-207.	2.2	95
148	Effects of Light and Nutrient Availability on Aspen: Growth, Phytochemistry, and Insect Performance. Journal of Chemical Ecology, 1999, 25, 1687-1714.	1.8	121
149	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1331-1341.	1.8	16
150	CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia, 1999, 119, 389-399.	2.0	35
151	CO. Oecologia, 1999, 119, 389.	2.0	37
152	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1677-1695.	1.8	59
153	Influences of atmospheric CO2 enrichment on the responses of sugar maple and trembling aspen to defoliation. New Phytologist, 1998, 140, 85-94.	7.3	35
154	Enriched atmospheric CO 2 and defoliation: effects on tree chemistry and insect performance. Global Change Biology, 1998, 4, 419-430.	9.5	77
155	Consequences of clonal variation in aspen phytochemistry for late season folivores. Ecoscience, 1998, 5, 508-516.	1.4	38
156	Effects of CO 2 and NO 3 - Availability on Deciduous Trees: Phytochemistry and Insect Performance. Ecology, 1997, 78, 215.	3.2	9
157	Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar) Tj ETQq1	1 0,78431 1.5	14.rgBT /Ove
158	Dietary Phenolics Affects Performance of the Gypsy Moth (Lepidoptera: Lymantriidae) and Its Parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environmental Entomology, 1997, 26, 668-671.	1.4	38
159	EFFECTS OF CO2AND NO3â ^{~?} AVAILABILITY ON DECIDUOUS TREES: PHYTOCHEMISTRY AND INSECT PERFORMANCE. Ecology, 1997, 78, 215-230.	3.2	143
160	Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia, 1997, 111, 99-108.	2.0	183
161	Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochemical Systematics and Ecology, 1996, 24, 357-364.	1.3	96
162	Preservation of salicaceae leaves for phytochemical analyses: Further assessment. Journal of Chemical Ecology, 1996, 22, 765-771.	1.8	38

#	Article	IF	CITATIONS
163	Diversity, Redundancy, and Multiplicity in Chemical Defense Systems of Aspen. , 1996, , 25-56.		46
164	Consequences of Elevated Atmospheric CO2 for Forest Insects. , 1996, , 347-361.		47
165	CO2-Mediated Changes in Tree Chemistry and Tree-Lepidoptera Interactions. , 1996, , 105-120.		66
166	Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 1995, 103, 79-88.	2.0	174
167	Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect-parasitoid interactions. Global Change Biology, 1995, 1, 173-182.	9.5	124
168	Differential toxicity of juglone (5-hydroxy-1,4-naphthoquinone) and related naphthoquinones to saturniid moths. Journal of Chemical Ecology, 1994, 20, 1631-1641.	1.8	28
169	Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 1994, 98, 133-138.	2.0	95
170	Effects of foliar phenolics and ascorbic acid on performance of the gypsy moth (Lymantria dispar). Biochemical Systematics and Ecology, 1994, 22, 341-351.	1.3	23
171	Detoxication activity in the gypsy moth: Effects of host CO2 and NO 3 ? availability. Journal of Chemical Ecology, 1993, 19, 357-367.	1.8	15
172	Responses of Diciduous Trees to Elevated Atmospheric CO2: Productivity, Phytochemistry, and Insect Performance. Ecology, 1993, 74, 763-777.	3.2	377
173	Deductions on Inductions by Herbivores Phytochemical Induction by Herbivores Douglas W. Tallamy Michael J. Raupp. BioScience, 1992, 42, 372-373.	4.9	Ο
174	Nutrient deficiencies and the gypsy moth, Lymantria dispar: Effects on larval performance and detoxication enzyme activities. Journal of Insect Physiology, 1991, 37, 45-52.	2.0	48
175	Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochemical Systematics and Ecology, 1991, 19, 97-103.	1.3	49
176	Biochemical ecology of the forest tent caterpillar: responses to dietary protein and phenolic glycosides. Oecologia, 1991, 86, 408-413.	2.0	67
177	Effects of protein and juglone on gypsy moths: Growth performance and detoxification enzyme activity. Journal of Chemical Ecology, 1990, 16, 2533-2547.	1.8	43
178	Responses of the Gypsy Moth (Lepidoptera: Lymantriidae) to Tremulacin, an Aspen Phenolic Glycoside. Environmental Entomology, 1990, 19, 842-847.	1.4	66
179	Host plant alteration of detoxication activity in <i>Papilio glaucus glaucus</i> . Entomologia Experimentalis Et Applicata, 1989, 50, 29-35.	1.4	44
180	Chemical ecology of the luna moth. Journal of Chemical Ecology, 1989, 15, 2019-2029.	1.8	41

#	Article	IF	CITATIONS
181	Differential toxicity of a phenolic glycoside from quaking aspen to Papilio glaucus butterfly subspecies, hybrids and backcrosses. Oecologia, 1989, 81, 186-191.	2.0	56
182	Differential esterase activity in Papilio glaucus subspecies: Absence of cross-resistance between allelochemicals and insecticides. Pesticide Biochemistry and Physiology, 1989, 35, 185-191.	3.6	21
183	Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochemistry, 1988, 18, 789-792.	1.8	50
184	Effects of the Quaking Aspen Compounds Catechol, Salicin and Isoniazid on Two Subspecies of Tiger Swallowtails. American Midland Naturalist, 1988, 119, 1.	0.4	12
185	Chemical Ecology of the Tiger Swallowtail: Mediation of Host Use by Phenolic Glycosides. Ecology, 1988, 69, 814-822.	3.2	150
186	Adaptations of Mammalian Herbivores to Plant Chemical Defenses. , 1988, , 415-445.		27
187	Fourteen years of population fluctuations of Microtus ochrogaster and M. pennsylvanicus in east central Illinois. Canadian Journal of Zoology, 1987, 65, 1317-1325.	1.0	61
188	Characterization of phenolic glycosides from quaking aspen. Biochemical Systematics and Ecology, 1987, 15, 677-680.	1.3	66
189	Seasonal patterns in the phytochemistry of three Populus species. Biochemical Systematics and Ecology, 1987, 15, 681-686.	1.3	100
190	Inducible Plant Chemical Defences: A Cause of Vole Population Cycles?. Journal of Animal Ecology, 1986, 55, 431.	2.8	42
191	Lespedeza Phenolics andPenstemon alkaloids: Effects on digestion efficiencies and growth of voles. Journal of Chemical Ecology, 1986, 12, 1977-1978.	1.8	0
192	Lespedeza phenolics andPenstemon alkaloids: Effects on digestion efficiencies and growth of voles. Journal of Chemical Ecology, 1986, 12, 713-728.	1.8	46
193	Patterns in the phytochemistry of three prairie plants. Biochemical Systematics and Ecology, 1986, 14, 597-602.	1.3	11
194	Plant phenolics as chemical defenses: Effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). Journal of Chemical Ecology, 1984, 10, 229-244.	1.8	139
195	Detoxication of some naturally occuring phenolics by prairie voles: a rapid assay of glucuronidation metabolism. Biochemical Systematics and Ecology, 1983, 11, 405-409.	1.3	21