
Daniel A Vallera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia, 2021, 35, 1586-1596.	7.2	57
2	Anti-NKG2C/IL-15/anti-CD33 killer engager directs primary and iPSC-derived NKG2C+ NK cells to target myeloid leukemia. Molecular Therapy, 2021, 29, 3410-3421.	8.2	16
3	A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Cancers, 2021, 13, 3994.	3.7	23
4	Design, Characterization, and Evaluation of scFvCD133/rGelonin: A CD133-Targeting Recombinant Immunotoxin for Use in Combination with Photochemical Internalization. Journal of Clinical Medicine, 2020, 9, 68.	2.4	17
5	Delineation of target expression profiles in CD34+/CD38â^' and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Advances, 2020, 4, 5118-5132.	5.2	62
6	Bispecific Targeting of EGFR and Urokinase Receptor (uPAR) Using Ligand-Targeted Toxins in Solid Tumors. Biomolecules, 2020, 10, 956.	4.0	9
7	Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager. Cancer Immunology Research, 2020, 8, 1139-1149.	3.4	39
8	NK-Cell-Mediated Targeting of Various Solid Tumors Using a B7-H3 Tri-Specific Killer Engager In Vitro and In Vivo. Cancers, 2020, 12, 2659.	3.7	54
9	Impact of repeated cycles of EGF bispecific angiotoxin (eBAT) administered at a reduced interval from doxorubicin chemotherapy in dogs with splenic haemangiosarcoma. Veterinary and Comparative Oncology, 2020, 18, 664-674.	1.8	7
10	GTB-3550 TriKEâ,,¢ for the Treatment of High-Risk Myelodysplastic Syndromes (MDS) and Refractory/Relapsed Acute Myeloid Leukemia (AML) Safely Drives Natural Killer (NK) Cell Proliferation At Initial Dose Cohorts. Blood, 2020, 136, 7-8.	1.4	19
11	3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Advanced Materials, 2019, 31, e1806899.	21.0	178
12	Immunotoxins Targeting B cell Malignancy—Progress and Problems With Immunogenicity. Biomedicines, 2019, 7, 1.	3.2	28
13	Novel CD19-targeted TriKE restores NK cell function and proliferative capacity in CLL. Blood Advances, 2019, 3, 897-907.	5.2	64
14	lmmunoPET, [64Cu]Cu-DOTA-Anti-CD33 PET-CT, Imaging of an AML Xenograft Model. Clinical Cancer Research, 2019, 25, 7463-7474.	7.0	11
15	PD-1 Is Expressed at Low Levels on All Peripheral Blood Natural Killer Cells but Is a Significant Suppressor of NK Function Against PD-1 Ligand Expressing Tumor Targets. Blood, 2019, 134, 621-621.	1.4	2
16	Bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies: Results of phase I-II trial Journal of Clinical Oncology, 2019, 37, e19066-e19066.	1.6	7
17	Early Reconstitution of NK and γδT Cells and Its Implication for the Design of Post-Transplant Immunotherapy. Biology of Blood and Marrow Transplantation, 2018, 24, 1152-1162.	2.0	56
18	Targeting EGFR and uPAR on human rhabdomyosarcoma, osteosarcoma, and ovarian adenocarcinoma with a bispecific ligand-directed toxin. Clinical Pharmacology: Advances and Applications, 2018, Volume 10, 113-121.	1.2	8

#	Article	IF	CITATIONS
19	161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Advances, 2018, 2, 1459-1469.	5.2	85
20	Trispecific killer engager CD16xIL15xCD33 potently induces NK cell activation and cytotoxicity against neoplastic mast cells. Blood Advances, 2018, 2, 1580-1584.	5.2	24
21	Development of a Deimmunized Bispecific Immunotoxin dDT2219 against B-Cell Malignancies. Toxins, 2018, 10, 32.	3.4	19
22	CD16-IL15-CLEC12A Trispecific Killer Engager (TriKE) Drives NK Cell Expansion, Activation, and Antigen Specific Killing of Cancer Stem Cells in Acute Myeloid Leukemia. Blood, 2018, 132, 1454-1454.	1.4	8
23	64cu-DOTA-Anti-CD33 PET-CT Imaging for Acute Myeloid Leukemia and Image-Guided Treatment. Blood, 2018, 132, 2747-2747.	1.4	1
24	Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget, 2018, 9, 11938-11947.	1.8	19
25	Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR. Molecular Cancer Therapeutics, 2017, 16, 956-965.	4.1	35
26	Allogeneic NK cells eradicate myeloblasts but not neoplastic mast cells in systemic mastocytosis associated with acute myeloid leukemia. American Journal of Hematology, 2017, 92, E66-E68.	4.1	11
27	Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Seminars in Immunology, 2017, 31, 64-75.	5.6	110
28	Engineering of Anti-CD133 Trispecific Molecule Capable of Inducing NK Expansion and Driving Antibody-Dependent Cell-Mediated Cytotoxicity. Cancer Research and Treatment, 2017, 49, 1140-1152.	3.0	68
29	CD133, Selectively Targeting the Root of Cancer. Toxins, 2016, 8, 165.	3.4	75
30	Enhanced ADCC and NK Cell Activation of an Anticarcinoma Bispecific Antibody by Genetic Insertion of a Modified IL-15 Cross-linker. Molecular Therapy, 2016, 24, 1312-1322.	8.2	78
31	IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, <i>In Vivo</i> Expansion, and Enhanced Function. Clinical Cancer Research, 2016, 22, 3440-3450.	7.0	291
32	Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget, 2016, 7, 73830-73844.	1.8	52
33	A novel brain metastasis xenograft model for convection-enhanced delivery of targeted toxins via a micro-osmotic pump system enabled for real-time bioluminescence imaging. Molecular Medicine Reports, 2015, 12, 5163-5168.	2.4	4
34	Mutagenic Deimmunization of Diphtheria Toxin for Use in Biologic Drug Development. Toxins, 2015, 7, 4067-4082.	3.4	23
35	Phase I Study of a Bispecific Ligand-Directed Toxin Targeting CD22 and CD19 (DT2219) for Refractory B-cell Malignancies. Clinical Cancer Research, 2015, 21, 1267-1272.	7.0	60

Bispecific Targeted Toxin DTATEGF Against Metastatic NSCLC Brain Tumors. , 2014, , 157-167.

0

#	Article	IF	CITATIONS
37	A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Targeted Oncology, 2014, 9, 239-249.	3.6	36
38	CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood, 2014, 123, 3016-3026.	1.4	220
39	Diphtheria toxin-based targeted toxins that target glioblastoma multiforme. Toxin Reviews, 2014, 33, 119-124.	3.4	1
40	Identification and characterization of a novel scFv recognizing human and mouse CD133. Drug Delivery and Translational Research, 2013, 3, 143-151.	5.8	16
41	Immunotoxin targeting CD133+ breast carcinoma cells. Drug Delivery and Translational Research, 2013, 3, 195-204.	5.8	31
42	Diphtheria toxin-based targeted toxin therapy for brain tumors. Journal of Neuro-Oncology, 2013, 114, 155-164.	2.9	22
43	Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors. International Journal of Cancer, 2013, 133, 1936-1944.	5.1	32
44	Heterodimeric Bispecific Single-Chain Variable-Fragment Antibodies Against EpCAM and CD16 Induce Effective Antibody-Dependent Cellular Cytotoxicity Against Human Carcinoma Cells. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 274-282.	1.0	81
45	Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecologic Oncology, 2013, 130, 579-587.	1.4	93
46	Targeting Natural Killer Cells to Acute Myeloid Leukemia <i>In Vitro</i> with a CD16 × 33 Bispecific Killer Cell Engager and ADAM17 Inhibition. Clinical Cancer Research, 2013, 19, 3844-3855.	7.0	208
47	An Old Idea Tackling a New Problem: Targeted Toxins Specific for Cancer Stem Cells. Antibodies, 2013, 2, 82-92.	2.5	2
48	Bispecific and Trispecific Killer Cell Engagers Directly Activate Human NK Cells through CD16 Signaling and Induce Cytotoxicity and Cytokine Production. Molecular Cancer Therapeutics, 2012, 11, 2674-2684.	4.1	202
49	Intracerebral infusion of the bispecific targeted toxin DTATEGF in a mouse xenograft model of a human metastatic non-small cell lung cancer. Journal of Neuro-Oncology, 2012, 109, 229-238.	2.9	17
50	Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma. Oral Oncology, 2012, 48, 1202-1207.	1.5	18
51	A Deimmunized Bispecific Ligand-Directed Toxin That Shows an Impressive Anti–Pancreatic Cancer Effect in a Systemic Nude Mouse Orthotopic Model. Pancreas, 2012, 41, 789-796.	1.1	15
52	A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. Journal of Neuro-Oncology, 2011, 103, 255-266.	2.9	31
53	Evaluation of a bispecific biological drug designed to simultaneously target glioblastoma and its neovasculature in the brain. Journal of Neurosurgery, 2011, 114, 1662-1671.	1.6	33
54	Targeting Tumor-Initiating Cancer Cells with dCD133KDEL Shows Impressive Tumor Reductions in a Xenotransplant Model of Human Head and Neck Cancer. Molecular Cancer Therapeutics, 2011, 10, 1829-1838.	4.1	66

#	Article	IF	CITATIONS
55	A New Drug Delivery Method of Bispecific Ligand-Directed Toxins, Which Reduces Toxicity and Promotes Efficacy in a Model of Orthotopic Pancreatic Cancer. Pancreas, 2010, 39, 913-922.	1.1	11
56	Bioengineering a Unique Deimmunized Bispecific Targeted Toxin That Simultaneously Recognizes Human CD22 and CD19 Receptors in a Mouse Model of B-Cell Metastases. Molecular Cancer Therapeutics, 2010, 9, 1872-1883.	4.1	35
57	A Novel Reduced Immunogenicity Bispecific Targeted Toxin Simultaneously Recognizing Human Epidermal Growth Factor and Interleukin-4 Receptors in a Mouse Model of Metastatic Breast Carcinoma. Clinical Cancer Research, 2009, 15, 6137-6147.	7.0	37
58	Intracranial elimination of human glioblastoma brain tumors in nude rats using the bispecific ligand-directed toxin, DTEGF13 and convection enhanced delivery. Journal of Neuro-Oncology, 2009, 95, 331-342.	2.9	29
59	Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leukemia Research, 2009, 33, 1233-1242.	0.8	78
60	Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. Journal of Neuro-Oncology, 2008, 87, 51-61.	2.9	36
61	Selfâ€Assembly of Antibodies by Chemical Induction. Angewandte Chemie - International Edition, 2008, 47, 10179-10182.	13.8	27
62	Radiotherapy of CD45-Expressing Daudi Tumors in Nude Mice with Yttrium-90-Labeled, PEGylated Anti-CD45 Antibody. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 488-500.	1.0	7
63	A Bispecific Recombinant Cytotoxin (DTEGF13) Targeting Human Interleukin-13 and Epidermal Growth Factor Receptors in a Mouse Xenograft Model of Prostate Cancer. Clinical Cancer Research, 2007, 13, 6486-6493.	7.0	34
64	Increasing Anticarcinoma Activity of an Anti-erbB2 Recombinant Immunotoxin by the Addition of an Anti-EpCAM sFv. Clinical Cancer Research, 2007, 13, 3058-3067.	7.0	42
65	Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. International Journal of Cancer, 2007, 120, 411-419.	5.1	31
66	Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. Journal of Neuro-Oncology, 2006, 77, 257-266.	2.9	27
67	Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. International Journal of Cancer, 2006, 118, 2594-2601.	5.1	31
68	Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurgical Focus, 2006, 20, E23.	2.3	39
69	Molecular modification of a recombinant, bivalent anti-human CD3 immunotoxin (Bic3) results in reduced in vivo toxicity in mice. Leukemia Research, 2005, 29, 331-341.	0.8	35
70	Radioimmunotherapy of CD22-Expressing Daudi Tumors in Nude Mice with a 90Y-Labeled Anti-CD22 Monoclonal Antibody. Clinical Cancer Research, 2005, 11, 7920-7928.	7.0	14
71	A Bispecific Recombinant Immunotoxin, DT2219, Targeting Human CD19 and CD22 Receptors in a Mouse Xenograft Model of B-Cell Leukemia/Lymphoma. Clinical Cancer Research, 2005, 11, 3879-3888.	7.0	93
72	Radiotherapy of CD19 Expressing Daudi Tumors in Nude Mice with Yttrium-90-Labeled Anti-CD19 Antibody. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 11-23.	1.0	20

#	ARTICLE	IF	CITATIONS
73	A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Engineering, Design and Selection, 2004, 17, 157-164.	2.1	63
74	Targeting the over-expressed urokinase-type plasminogen activator receptor on glioblastoma multiforme. Journal of Neuro-Oncology, 2003, 65, 63-75.	2.9	33
75	Immunotoxin therapy for CNS tumor. Journal of Neuro-Oncology, 2003, 64, 101-116.	2.9	32
76	Retroviral Immunotoxin Gene Therapy of Leukemia in Mice Using Leukemia-Specific T Cells Transduced with an Interleukin-3/Bax Fusion Protein Gene. Human Gene Therapy, 2003, 14, 1787-1798.	2.7	7
77	Gene Therapy of Murine Solid Tumors with T Cells Transduced with a Retroviral Vascular Endothelial Growth Factor–Immunotoxin Target Gene. Human Gene Therapy, 2002, 13, 497-508.	2.7	24
78	Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Engineering, Design and Selection, 2002, 15, 419-427.	2.1	53
79	Targeting Urokinase-Type Plasminogen Activator Receptor on Human Glioblastoma Tumors With Diphtheria Toxin Fusion Protein DTAT. Journal of the National Cancer Institute, 2002, 94, 597-606.	6.3	85
80	Molecular modification of a recombinant anti-CD3ε-directed immunotoxin by inducing terminal cysteine bridging enhances anti-GVHD efficacy and reduces organ toxicity in a lethal murine model. Blood, 2000, 96, 1157-1165.	1.4	19
81	Targeting myeloid leukemia with a DT390-mIL-3 fusion immunotoxin: ex vivo and in vivo studies in mice. Protein Engineering, Design and Selection, 1999, 12, 779-785.	2.1	15
82	Intrathecal therapy of leptomeningeal CEM T-cell lymphoma in nude rats with anti-CD7 ricin toxin A chain immunotoxin. Journal of Neuro-Oncology, 1998, 40, 1-9.	2.9	5
83	Laboratory preparation of a deglycosylated ricin toxin A chain containing immunotoxin directed against a CD7 T lineage differentiation antigen for phase I human clinical studies involving T cell malignancies. Journal of Immunological Methods, 1996, 197, 69-83.	1.4	19
84	THE ROLE OF HOST T CELL SUBSETS IN BONE MARROW REJECTION DIRECTED TO ISOLATED MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I VERSUS CLASS II DIFFERENCES OF bm1 and bm12 MUTANT MICE1,2. Transplantation, 1994, 57, 249-255.	1.0	46
85	Monoclonal Antibody Recognizing a Unique Rh-Related Specificity. Vox Sanguinis, 1993, 64, 231-239.	1.5	6
86	Anti-CD3 Immunotoxin Prevents Low-Dose STZ/Interferon-Induced Autoimmune Diabetes in Mouse. Diabetes, 1992, 41, 457-464.	0.6	25
87	Use of Monoclonal Antibody-Intact Ricin Conjugates in Experimental Allogeneic Bone Marrow Transplantation, Protides of the Biological Fluids: Proceedings of the Colloquium, 1984, 31, 769-774.	0.1	0