Raffaele Albanese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Scenarios for the DTT Tokamak with Optimized Poloidal Field Coil Current Waveforms. Energies, 2022, 15, 1702.	3.1	8
2	Integrated design strategy for EU-DEMO first wall protection from plasma transients. Fusion Engineering and Design, 2022, 177, 113067.	1.9	21
3	The SHiP experiment at the proposed CERN SPS Beam Dump Facility. European Physical Journal C, 2022, 82, .	3.9	8
4	Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nature Physics, 2022, 18, 776-782.	16.7	36
5	Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles. European Physical Journal C, 2021, 81, 1.	3.9	10
6	Assessment of alternative divertor configurations as an exhaust solution for DEMO. Nuclear Fusion, 2020, 60, 066030.	3.5	41
7	The magnet of the scattering and neutrino detector for the SHiP experiment at CERN. Journal of Instrumentation, 2020, 15, P01027-P01027.	1.2	6
8	Impact of plasma thermal transients on the design of the EU DEMO first wall protection. Fusion Engineering and Design, 2020, 158, 111713.	1.9	16
9	Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target. European Physical Journal C, 2020, 80, 1.	3.9	4
10	Measuring fast ions in fusion plasmas with neutron diagnostics at JET. Plasma Physics and Controlled Fusion, 2019, 61, 014027.	2.1	23
11	Sensitivity of the SHiP experiment to Heavy Neutral Leptons. Journal of High Energy Physics, 2019, 2019, 1.	4.7	48
12	Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond. Nuclear Fusion, 2019, 59, 112023.	3.5	43
13	Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nuclear Fusion, 2019, 59, 086020.	3.5	34
14	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
15	Electromagnetic analyses of single and double null configurations in DEMO device. Fusion Engineering and Design, 2019, 146, 1468-1472.	1.9	8
16	The experimental facility for the Search for Hidden Particles at the CERN SPS. Journal of Instrumentation, 2019, 14, P03025-P03025.	1.2	26
17	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
18	MIMO shape control at the EAST tokamak: Simulations and experiments. Fusion Engineering and Design, 2019, 146, 1282-1285.	1.9	5

#	Article	IF	CITATIONS
19	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
20	Role of Italian DTT in the power exhaust implementation strategy. Fusion Engineering and Design, 2019, 146, 932-936.	1.9	23
21	Optimization of DEMO geometry and disruption location prediction. Fusion Engineering and Design, 2019, 146, 967-971.	1.9	9
22	Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks. Journal of Instrumentation, 2019, 14, P11028-P11028.	1.2	26
23	Magnetic configurations and electromagnetic analysis of the Italian DTT device. Fusion Engineering and Design, 2019, 146, 1246-1253.	1.9	8
24	Design review for the Italian Divertor Tokamak Test facility. Fusion Engineering and Design, 2019, 146, 194-197.	1.9	27
25	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
26	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3
27	Diagnostics for plasma control – From ITER to DEMO. Fusion Engineering and Design, 2019, 146, 465-472.	1.9	71
28	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
29	Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET. Nuclear Fusion, 2019, 59, 016004.	3.5	9
30	Runaway electron beam control. Plasma Physics and Controlled Fusion, 2019, 61, 014036.	2.1	26
31	Scenario development for the observation of alpha-driven instabilities in JET DT plasmas. Nuclear Fusion, 2018, 58, 082005.	3.5	34
32	Integrated plasma control for long pulse advanced plasma discharges on EAST. Fusion Engineering and Design, 2018, 128, 90-94.	1.9	6
33	MHD spectroscopy of JET plasmas with pellets via Alfvén eigenmodes. Nuclear Fusion, 2018, 58, 082008.	3.5	7
34	Evidence of9Be  +  pnuclear reactions during 2ï‰CHand hydrogen minority ICRH in JET-ILW h deuterium plasmas. Nuclear Fusion, 2018, 58, 026033.	ydr <u>o</u> gen a	nd 3
35	TAE stability calculations compared to TAE antenna results in JET. Nuclear Fusion, 2018, 58, 082007.	3.5	11

36Studies of the plasma vertical instability and its stabilized concepts in JA and EU broader approach,
DEMO design activity. Fusion Engineering and Design, 2018, 136, 874-877.1.94

#	Article	IF	CITATIONS
37	High fusion performance at high <i>T</i> _i / <i>T</i> _e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing. Nuclear Fusion, 2018, 58, 036020.	3.5	23
38	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
39	Light impurity transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 036009.	3.5	13
40	14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source. Nuclear Fusion, 2018, 58, 026012.	3.5	22
41	Analysis of possible improvement of the plasma performance in JET due to the inward spatial channelling of fast-ion energy. Nuclear Fusion, 2018, 58, 076012.	3.5	8
42	Model-based plasma vertical stabilization and position control at EAST. Fusion Engineering and Design, 2018, 129, 152-157.	1.9	4
43	Wall protection strategies for DEMO plasma transients. Fusion Engineering and Design, 2018, 136, 410-414.	1.9	39
44	Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 014032.	2.1	17
45	Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET. Nuclear Fusion, 2018, 58, 016014.	3.5	12
46	An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor. Nuclear Fusion, 2018, 58, 106034.	3.5	6
47	Numerical assessment of a novel technique for the reconstruction of 3D magnetic fields in tokamaks. International Journal of Applied Electromagnetics and Mechanics, 2018, 56, 73-81.	0.6	0
48	Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 026028.	3.5	17
49	Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nuclear Fusion, 2018, 58, 096006.	3.5	41
50	Inter-ELM evolution of the edge current density in JET-ILW type I ELMy H-mode plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 085003.	2.1	4
51	Equilibrium reconstruction at JET using Stokes model for polarimetry. Nuclear Fusion, 2018, 58, 106032.	3.5	20
52	Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET. Nuclear Fusion, 2018, 58, 076022.	3.5	20
53	Optimization of the PF coil system in axisymmetric fusion devices. Fusion Engineering and Design, 2018, 133, 163-172.	1.9	7
54	W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER. Plasma Physics and Controlled Fusion, 2018, 60, 074008.	2.1	26

#	Article	IF	CITATIONS
55	Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes. Nuclear Fusion, 2018, 58, 095003.	3.5	16
56	Simulation suite for plasma magnetic control at EAST tokamak. Fusion Engineering and Design, 2018, 133, 19-31.	1.9	9
57	Preliminary results of a new MIMO plasma shape controller for EAST. Fusion Engineering and Design, 2018, 128, 38-46.	1.9	1
58	Integrated modelling of H-mode pedestal and confinement in JET-ILW. Plasma Physics and Controlled Fusion, 2018, 60, 014042.	2.1	40
59	Electron acceleration in a JET disruption simulation. Nuclear Fusion, 2018, 58, 106022.	3.5	21
60	Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating. Nuclear Fusion, 2018, 58, 106037.	3.5	29
61	Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating. Nuclear Fusion, 2018, 58, 096020.	3.5	14
62	The DTT device: Role and objectives. Fusion Engineering and Design, 2017, 122, 285-287.	1.9	12
63	The DTT device: Poloidal field coil assessment for alternative plasma configurations. Fusion Engineering and Design, 2017, 122, 322-332.	1.9	11
64	The DEMO wall load challenge. Nuclear Fusion, 2017, 57, 046002.	3.5	65
65	DTT device: Conceptual design of the superconducting magnet system. Fusion Engineering and Design, 2017, 122, 299-312.	1.9	21
66	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
67	The DTT device: Rationale for the choice of the parameters. Fusion Engineering and Design, 2017, 122, 288-298.	1.9	18
68	The DTT proposal. A tokamak facility to address exhaust challenges for DEMO: Introduction and executive summary. Fusion Engineering and Design, 2017, 122, 274-284.	1.9	32
69	Effect of engineering constraints on charged particle wall heat loads in DEMO. Fusion Engineering and Design, 2017, 124, 385-390.	1.9	19
70	3D Analysis of magnetic field lines to assess the impact of stray fields at breakdown in ITER. Fusion Engineering and Design, 2017, 123, 597-602.	1.9	3
71	DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO. Nuclear Fusion, 2017, 57, 016010.	3.5	36
72	Diagnostics, data acquisition and control of the divertor test tokamak experiment. Fusion Engineering and Design, 2017, 122, 365-374.	1.9	5

#	Article	IF	CITATIONS
73	Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution ^a . Nuclear Fusion, 2017, 57, 102014.	3.5	23
74	The DTT device: Costs, site and management aspects. Fusion Engineering and Design, 2017, 122, 387-394.	1.9	1
75	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
76	Overview of the preliminary design of the ITER plasma control system. Nuclear Fusion, 2017, 57, 125001.	3.5	23
77	Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine. Nuclear Fusion, 2017, 57, 126049.	3.5	11
78	The Divertor Tokamak Test facility proposal: Physical requirements and reference design. Nuclear Materials and Energy, 2017, 12, 1330-1335.	1.3	16
79	ITER-like vertical stabilization system for the east Tokamak. Nuclear Fusion, 2017, 57, 086039.	3.5	30
80	Axisymmetric global Alfvén eigenmodes within the ellipticity-induced frequency gap in the Joint European Torus. Physics of Plasmas, 2017, 24, .	1.9	16
81	Overview of the TCV tokamak program: scientific progress and facility upgrades. Nuclear Fusion, 2017, 57, 102011.	3.5	52
82	A strategy for the optimal choice of the magnetic sensors for the estimation of plasma parameters with fault tolerance in the ITER tokamak. , 2016, , .		0
83	A MIMO architecture for integrated control of plasma shape and flux expansion for the EAST tokamak. , 2016, , .		6
84	Enhancement of EAST plasma control capabilities. Fusion Engineering and Design, 2016, 112, 660-666.	1.9	12
85	Limitations of transient power loads on DEMO and analysis of mitigation techniques. Fusion Engineering and Design, 2016, 109-111, 1067-1071.	1.9	25
86	Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER. Nuclear Fusion, 2016, 56, 026001.	3.5	36
87	Optimal number and position of the magnetic sensors for plasma shape identification in ITER. , 2016, , .		Ο
88	Improving the performance of the JET Shape Controller. Fusion Engineering and Design, 2015, 96-97, 668-671.	1.9	3
89	Accuracy Assessment of Numerical Tracing of Three-Dimensional Magnetic Field Lines in Tokamaks with Analytical Invariants. Fusion Science and Technology, 2015, 68, 741-749.	1.1	6
90	Advances in the physics basis for the European DEMO design. Nuclear Fusion, 2015, 55, 063003.	3.5	122

#	Article	IF	CITATIONS
91	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
92	Perspectives for the high field approach in fusion research and advances within the Ignitor Program. Nuclear Fusion, 2015, 55, 053011.	3.5	12
93	Sensitivity of the diamagnetic sensor measurements of ITER to error sources and their compensation. Fusion Engineering and Design, 2015, 100, 133-141.	1.9	13
94	Initial DEMO tokamak design configuration studies. Fusion Engineering and Design, 2015, 98-99, 1423-1426.	1.9	51
95	EAST alternative magnetic configurations: modelling and first experiments. Nuclear Fusion, 2015, 55, 083005.	3.5	48
96	First disruption studies and simulations in view of the development of the DEMO Physics Basis. Fusion Engineering and Design, 2015, 96-97, 348-352.	1.9	4
97	Effects of asymmetric vertical disruptions on ITER components. Fusion Engineering and Design, 2015, 94, 7-21.	1.9	31
98	CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver. Fusion Engineering and Design, 2015, 96-97, 664-667.	1.9	82
99	European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems. Fusion Engineering and Design, 2015, 96-97, 361-364.	1.9	27
100	The science program of the TCV tokamak: exploring fusion reactor and power plant concepts. Nuclear Fusion, 2015, 55, 104004.	3.5	37
101	Simulation of EAST quasi-snowflake discharge by tokamak simulation code. Fusion Engineering and Design, 2015, 101, 101-110.	1.9	7
102	Optimization of experimental snowflake configurations on TCV. Nuclear Fusion, 2014, 54, 123008.	3.5	11
103	Numerical Formulations for Accurate Magnetic Field Flow Tracing in Fusion Tokamaks. , 2014, , .		2
104	A procedure for the design of snowflake magnetic configurations in tokamaks. Plasma Physics and Controlled Fusion, 2014, 56, 035008.	2.1	8
105	F4E studies for the electromagnetic analysis of ITER components. Fusion Engineering and Design, 2014, 89, 1854-1858.	1.9	9
106	Assessment of the performance of an induction heating furnace for the production of superalloy blades. , 2014, , .		0
107	Electromagnetic Models of Plasma Breakdown in the JET Tokamak. IEEE Transactions on Magnetics, 2014, 50, 937-940.	2.1	15
108	Linearized models for a new magnetic control in MAST. Fusion Engineering and Design, 2013, 88, 1091-1096.	1.9	5

#	Article	IF	CITATIONS
109	Integrated Procedure for Halo Current Reconstruction in ITER. IEEE Transactions on Plasma Science, 2013, 41, 257-262.	1.3	5
110	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
111	Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes. Nuclear Fusion, 2013, 53, 113002.	3.5	55
112	A simplified poloidal beta response model in JET. Fusion Engineering and Design, 2013, 88, 1105-1108.	1.9	2
113	New developments, plasma physics regimes and issues for the Ignitor experiment. Nuclear Fusion, 2013, 53, 104013.	3.5	22
114	Computational techniques for efficient analysis of large halo current models in fusion devices. , 2013, , .		0
115	JET modeling and control analysis for POET (PFX Operating Early Task). Fusion Engineering and Design, 2013, 88, 1113-1116.	1.9	1
116	Status of the EU domestic agency electromagnetic analyses of ITER vacuum vessel and blanket modules. Fusion Engineering and Design, 2013, 88, 1934-1937.	1.9	11
117	Numerical modeling of 3D halo current path in ITER structures. Fusion Engineering and Design, 2013, 88, 529-532.	1.9	7
118	Characterisation of plasma breakdown at JET with a carbon and ITER-like wall. Nuclear Fusion, 2013, 53, 053003.	3.5	41
119	Optimization of the magnetic diagnostic for plasma shape identification in tokamak machines. , 2013, , .		4
120	Experimental results with an optimized magnetic field configuration for JET breakdown. Nuclear Fusion, 2012, 52, 123010.	3.5	8
121	Electromagnetic transient studies in the ITER tokamak. International Journal of Applied Electromagnetics and Mechanics, 2012, 39, 65-71.	0.6	2
122	Modelling and control for plasma disruption avoidance and mitigation. International Journal of Applied Electromagnetics and Mechanics, 2012, 39, 73-79.	0.6	0
123	Exploitation of modularity in the JET tokamak vertical stabilization system. Control Engineering Practice, 2012, 20, 846-856.	5.5	15
124	Coupled Three Dimensional Numerical Calculation of Forces and Stresses on the End Windings of Large Turbo Generators via Integral Formulation. IEEE Transactions on Magnetics, 2012, 48, 875-878.	2.1	38
125	Integrated procedure for halo current reconstruction in ITER. , 2011, , .		1
126	Control of Elongated Plasma in Presence of ELMs in the JET Tokamak. IEEE Transactions on Nuclear Science, 2011, 58, 1497-1502.	2.0	19

#	Article	IF	CITATIONS
127	Real-Time Systems in Tokamak Devices. A Case Study: The JET Tokamak. IEEE Transactions on Nuclear Science, 2011, 58, 1420-1426.	2.0	10
128	Open loop optimal control for plasma scenarios in the presence of eddy currents. , 2011, , .		0
129	Electromagnetic analysis of breakdown conditions in JET. Fusion Engineering and Design, 2011, 86, 675-679.	1.9	12
130	Poloidal field circuits sensitivity studies and shape control in FAST. Fusion Engineering and Design, 2011, 86, 1076-1079.	1.9	3
131	Status of the EU DA electromagnetic analysis contribution to ITER. Fusion Engineering and Design, 2011, 86, 1049-1052.	1.9	6
132	Overview of modelling activities for Plasma Control Upgrade in JET. Fusion Engineering and Design, 2011, 86, 1030-1033.	1.9	17
133	FAST: A European ITER satellite experiment in the view of DEMO. Fusion Engineering and Design, 2011, 86, 497-503.	1.9	17
134	A MARTe based simulator for the JET Vertical Stabilization system. Fusion Engineering and Design, 2011, 86, 1026-1029.	1.9	4
135	First plasma operation of the enhanced JET vertical stabilisation system. Fusion Engineering and Design, 2011, 86, 539-543.	1.9	19
136	Current, Position, and Shape Control in Tokamaks. Fusion Science and Technology, 2011, 59, 486-498.	1.1	20
137	An Alternative Controlled Variable for JET Vertical Stabilization. Fusion Science and Technology, 2011, 59, 363-375.	1.1	3
138	Plasma modeling and magnetic control of FAST tokamak proposal. , 2011, , .		0
139	Electromechanical analysis of end windings in turbo generators. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30, 1885-1898.	0.9	7
140	Exploitation of modularity in the JET tokamak Vertical Stabilization system. , 2011, , .		3
141	Assessment of alternative vessel and blanket design on ITER operation. Fusion Engineering and Design, 2010, 85, 2245-2250.	1.9	Ο
142	Electromagnetic Disruption Loads on ITER Blanket Modules. IEEE Transactions on Magnetics, 2010, 46, 2935-2938.	2.1	17
143	Conceptual design of the FAST load assembly. Fusion Engineering and Design, 2010, 85, 174-180.	1.9	12
144	Coupling plasmas and 3D passive structures in the JET tokamak. International Journal of Applied Electromagnetics and Mechanics, 2010, 33, 533-540.	0.6	4

#	Article	IF	CITATIONS
145	The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy. Nuclear Fusion, 2010, 50, 095005.	3.5	58
146	Resistive wall mode control code maturity: progress and specific examples. Plasma Physics and Controlled Fusion, 2010, 52, 104002.	2.1	58
147	Using magnetic diagnostics to extrapolate operational limits in elongated tokamak plasmas. , 2010, , .		1
148	Real-time systems in tokamak devices. A case study: The JET tokamak. , 2010, , .		6
149	Progress in physics and control of the resistive wall mode in advanced tokamaks. Physics of Plasmas, 2009, 16, .	1.9	51
150	Overview of JET results. Nuclear Fusion, 2009, 49, 104006.	3.5	46
151	ITER operational space for full plasma current H-mode operation. Fusion Engineering and Design, 2009, 84, 300-304.	1.9	6
152	Installation and commissioning of the JET-EP magnetic diagnostic system. Fusion Engineering and Design, 2009, 84, 1495-1498.	1.9	14
153	ITER vertical stabilization system. Fusion Engineering and Design, 2009, 84, 394-397.	1.9	9
154	Plasma scenarios, equilibrium configurations and control in the design of FAST. Fusion Engineering and Design, 2009, 84, 1562-1569.	1.9	14
155	FAST plasma scenarios and equilibrium configurations. Nuclear Fusion, 2009, 49, 055002.	3.5	25
156	Principal physics developments evaluated in the ITER design review. Nuclear Fusion, 2009, 49, 065012.	3.5	200
157	Jet operations and plasma control: A plasma control system that is safe and flexible in a manageable way , 2009, , .		6
158	The JET PCU project: An international plasma control project. Fusion Engineering and Design, 2008, 83, 202-206.	1.9	35
159	Coupling Between a 3-D Integral Eddy Current Formulation and a Linearized MHD Model for the Analysis of Resistive Wall Modes. IEEE Transactions on Magnetics, 2008, 44, 1654-1657.	2.1	44
160	Identification of Vertical Instabilities in the JET Tokamak. IEEE Transactions on Magnetics, 2008, 44, 1650-1653.	2.1	10
161	Main Features of Plasma Control. AIP Conference Proceedings, 2008, , .	0.4	0
162	Magnetic Control of a Tokamak Plasma. AIP Conference Proceedings, 2008, , .	0.4	1

#	Article	IF	CITATIONS
163	Linearly perturbed MHD equilibria and 3D eddy current coupling via the control surface method. Plasma Physics and Controlled Fusion, 2008, 50, 085004.	2.1	60
164	An analytical demonstration of coupling schemes between magnetohydrodynamic codes and eddy current codes. Physics of Plasmas, 2008, 15, 072516.	1.9	11
165	Plasma reconstruction in tokamaks with linearized approaches. International Journal of Applied Electromagnetics and Mechanics, 2007, 26, 191-199.	0.6	8
166	XSC Tools: A Software Suite for Tokamak Plasma Shape Control Design and Validation. IEEE Transactions on Plasma Science, 2007, 35, 709-723.	1.3	34
167	Magnetic configuration control of ITER plasmas. Fusion Engineering and Design, 2007, 82, 1138-1143.	1.9	5
168	Strategies for the plasma position and shape control in IGNITOR. Fusion Engineering and Design, 2007, 82, 1036-1044.	1.9	2
169	Analysis of resistive joints for superconducting cables for fusion applications. IEEE Transactions on Magnetics, 2006, 42, 1355-1358.	2.1	3
170	A 3-D Integral formulation coupled to a rigid nonaxisymmetric plasma model. IEEE Transactions on Magnetics, 2006, 42, 1399-1402.	2.1	0
171	Open Loop Control Strategies for Plasma Scenarios: Linear and Nonlinear Techniques for Configuration Transitions. , 2006, , .		3
172	Progress in Technology at JET. Fusion Science and Technology, 2005, 47, 355-362.	1.1	1
173	XSC plasma control: Tool development for the session leader. Fusion Engineering and Design, 2005, 74, 521-525.	1.9	8
174	Vertical stability of ITER plasmas with 3D passive structures and a double-loop control system. Fusion Engineering and Design, 2005, 74, 537-542.	1.9	12
175	Design, implementation and test of the XSC extreme shape controller in JET. Fusion Engineering and Design, 2005, 74, 627-632.	1.9	34
176	Reconstruction capability of JET magnetic sensors. Fusion Engineering and Design, 2005, 74, 825-830.	1.9	11
177	Development of real-time diagnostics and feedback algorithms for JET in view of the next step. Plasma Physics and Controlled Fusion, 2005, 47, 395-407.	2.1	15
178	A model-based technique for integrated real-time profile control in the JET tokamak. Plasma Physics and Controlled Fusion, 2005, 47, 155-183.	2.1	69
179	Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches. IEEE Control Systems, 2005, 25, 76-92.	0.8	73
180	Electromagnetic Analysis of the 3-D Effects of the Metallic Structures in JET Tokamak. IEEE Transactions on Magnetics, 2004, 40, 589-592.	2.1	5

#	Article	IF	CITATIONS
181	Design of the new magnetic sensors for Joint European Torus. Review of Scientific Instruments, 2004, 75, 4311-4313.	1.3	14
182	Prediction of the growth rates of VDEs in JET. Nuclear Fusion, 2004, 44, 999-1007.	3.5	40
183	Error bounds for inverse electromagnetic problems in soil mechanics. Mathematical and Computer Modelling, 2003, 37, 603-613.	2.0	2
184	Neutral point detection in JET. Fusion Engineering and Design, 2003, 66-68, 709-714.	1.9	6
185	Plasma response models for current, shape and position control in JET. Fusion Engineering and Design, 2003, 66-68, 715-718.	1.9	62
186	Upgrade of the present JET shape and vertical stability controller. Fusion Engineering and Design, 2003, 66-68, 803-807.	1.9	25
187	Plasma modeling for position and current control in FTU. Fusion Engineering and Design, 2003, 66-68, 681-689.	1.9	6
188	Integrated scenario in JET using real-time profile control. Plasma Physics and Controlled Fusion, 2003, 45, A367-A383.	2.1	55
189	Overview of JET results. Nuclear Fusion, 2003, 43, 1540-1554.	3.5	38
190	A numerical approach for current source detection. International Journal of Applied Electromagnetics and Mechanics, 2002, 14, 507-512.	0.6	1
191	Phenomenological approaches based on an integral formulation for forward and inverse problems in eddy current testing. International Journal of Applied Electromagnetics and Mechanics, 2001, 12, 115-137.	0.6	8
192	Linearized models for RFX configurations. Fusion Engineering and Design, 2001, 56-57, 733-738.	1.9	7
193	An integrated approach to the control of magnetically confined plasmas. Fusion Engineering and Design, 2001, 56-57, 705-709.	1.9	0
194	A fast 3D eddy current integral formulation. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20, 317-331.	0.9	18
195	Identification of the B–H curve from external measurements using complementary formulations. Physica B: Condensed Matter, 2000, 275, 228-232.	2.7	5
196	Fast algorithms for crack simulation and identification in eddy current testing. AIP Conference Proceedings, 2000, , .	0.4	0
197	Local error bounds for static and stationary fields. IEEE Transactions on Magnetics, 2000, 36, 1615-1618.	2.1	1
198	Parameterized template meshes for 2D and 3D finite element modeling. IEEE Transactions on Magnetics, 2000, 36, 1610-1614.	2.1	1

#	Article	IF	CITATIONS
199	Time evolution of tokamak plasmas in the presence of 3D conducting structures. IEEE Transactions on Magnetics, 2000, 36, 1804-1807.	2.1	9
200	An Integral Computational Model for Crack Simulation and Detection via Eddy Currents. Journal of Computational Physics, 1999, 152, 736-755.	3.8	57
201	Measurement of the open loop plasma equilibrium response in TCV. Nuclear Fusion, 1999, 39, 663-683.	3.5	49
202	Non destructive evaluation in the time domain. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1999, 18, 422-435.	0.9	3
203	The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks. Nuclear Fusion, 1998, 38, 723-738.	3.5	210
204	Upper and lower bounds for local electromagnetic quantities. International Journal for Numerical Methods in Engineering, 1998, 42, 499-515.	2.8	10
205	Optimization of the power supply demand for plasma shape control in a tokamak. IEEE Transactions on Magnetics, 1998, 34, 3580-3583.	2.1	7
206	The separatrix response of diverted TCV plasmas compared with the predictions of the CREATE-L model. Nuclear Fusion, 1998, 38, 1043-1053.	3.5	19
207	A nonlinear eddy-current integral formulation for moving bodies. IEEE Transactions on Magnetics, 1998, 34, 2529-2534.	2.1	24
208	Electromagnetic analysis with equivalent models of complex conducting structures. IEEE Transactions on Magnetics, 1998, 34, 3256-3259.	2.1	3
209	Analysis of metallic tubes with ECT and neuro-fuzzy processing. International Journal of Applied Electromagnetics and Mechanics, 1998, 9, 325-338.	0.6	2
210	Dynamic Control of Plasma Position and Shape in ITER. Fusion Science and Technology, 1997, 32, 374-389.	0.6	21
211	Comparison of the CREATE-L plasma response model with TCV limited discharges. Nuclear Fusion, 1997, 37, 1395-1410.	3.5	46
212	Finite Element Methods for the Solution of 3D Eddy Current Problems. Advances in Imaging and Electron Physics, 1997, , 1-86.	0.2	117
213	CONTROL OF THE MAGNETIC CONFIGURATION IN ITER. , 1997, , 731-734.		3
214	Electromagnetics aspects in ITER: impact on magnet cryogenics, plasma diagnostics and control system11Work performed under EURATOM study Contracts in the framework of the EC ITER Hometeam activities. , 1997, , 809-812.		0
215	Modelling and engineering aspects of the plasma shape control in ITER. , 1997, , 735-738.		1
216	A nonlinear eddy current integral formulation in terms of a two-component current density vector potential. IEEE Transactions on Magnetics, 1996, 32, 784-787.	2.1	22

#	Article	IF	CITATIONS
217	Analysis of a transient nonlinear 3-D eddy current problem with differential and integral methods. IEEE Transactions on Magnetics, 1996, 32, 776-779.	2.1	11
218	Numerical analysis of a coupled problem: time evolution of a tokamak plasma in contact with a conducting wall. IEEE Transactions on Magnetics, 1996, 32, 984-989.	2.1	0
219	Plasma Current, Shape, and Position Control in ITER. Fusion Science and Technology, 1996, 30, 167-183.	0.6	33
220	Identification of Plasma Equilibria in ITER from Magnetic Measurements Via Functional Parameterization and Neural Networks. Fusion Science and Technology, 1996, 30, 219-236.	0.6	18
221	PLASMA ENGINEERING AND ELECTROMAGNETIC ASPECTS IN ITER DESIGN. , 1995, , 807-810.		0
222	An error based approach to the solution of full Maxwell equations. IEEE Transactions on Magnetics, 1994, 30, 2968-2971.	2.1	11
223	PF coil voltage optimization for start-up scenarios in air core tokamaks. IEEE Transactions on Magnetics, 1994, 30, 3423-3426.	2.1	6
224	Validation of numerical codes for the analysis of plasma discharges. Fusion Engineering and Design, 1994, 23, 299-322.	1.9	0
225	Analysis of Three-Dimensional Electromagnetic Fields Using Edge Elements. Journal of Computational Physics, 1993, 108, 236-245.	3.8	23
226	Advances in electromagnetic design of fusion devices. IEEE Transactions on Magnetics, 1993, 29, 2353-2358.	2.1	1
227	EFFECTS OF THE EDDY CURRENTS FOR SOME DESIGN AND INTERPRETATION PROBLEMS IN A TOKAMAK. , 1993, , 679-683.		3
228	SENSITIVITY OF A TOKAMAK PLASMA SIMULATION TO SOME MODEL UNCERTAINTIES. , 1993, , 732-736.		6
229	VALIDATION OF NUMERICAL CODES FOR THE ANALYSIS OF PLASMA DISCHARGES IN A FUSION DEVICE. , 1993, , 684-688.		2
230	Periodic solutions of nonlinear eddy current problems in three-dimensional geometries. IEEE Transactions on Magnetics, 1992, 28, 1118-1121.	2.1	17
231	Numerical procedures for the solution of nonlinear electromagnetic problems. IEEE Transactions on Magnetics, 1992, 28, 1228-1231.	2.1	31
232	Electromagnetic effects induced by plasma disruptions in the NET vacuum vessel. Fusion Engineering and Design, 1991, 15, 201-221.	1.9	13
233	On the numerical solution of the nonlinear three-dimensional eddy current problem. IEEE Transactions on Magnetics, 1991, 27, 3990-3995.	2.1	14
234	Formulation of the eddy-current problem. IEE Proceedings A: Physical Science Measurement and Instrumentation Management and Education Reviews, 1990, 137, 16-22.	0.1	39

#	Article	IF	CITATIONS
235	Treatment of multiply connected regions in two-component electric vector potentials formulations. IEEE Transactions on Magnetics, 1990, 26, 650-653.	2.1	19
236	Analysis of vertical instabilities in air core tokamaks in the presence of three-dimensional conducting structures. IEEE Transactions on Magnetics, 1990, 26, 853-856.	2.1	11
237	Magnetostatic field computations in terms of two-component vector potentials. International Journal for Numerical Methods in Engineering, 1990, 29, 515-532.	2.8	118
238	Computational Methods for the Electromagnetic Analysis in Fusion Devices. , 1990, , 161-187.		0
239	Plasma modelling for the control of vertical instabilities in tokamaks. Nuclear Fusion, 1989, 29, 1013-1023.	3.5	68
240	On certain properties of the electric vector potential in eddy-current problems. Part 2. IEE Proceedings A: Physical Science Measurement and Instrumentation Management and Education Reviews, 1989, 136, 255-256.	0.1	0
241	ANALYSIS OF THE PLASMA EQUILIBRIUM EVOLUTION IN THE PRESENCE OF CIRCUITS AND MASSIVE CONDUCTING STRUCTURES. , 1989, , 281-286.		1
242	ANALYSIS OF VERTICAL INSTABILITY IN THE JET EXPERIMENT. , 1989, , 694-699.		1
243	Solution of three dimensional eddy current problems by integral and differential methods. IEEE Transactions on Magnetics, 1988, 24, 98-101.	2.1	114
244	Integral formulation for 3D eddy-current computation using edge elements. IEE Proceedings A: Physical Science Measurement and Instrumentation Management and Education Reviews, 1988, 135, 457.	0.1	69
245	Next European Torus Operation Cycle. Fusion Science and Technology, 1988, 14, 145-155.	0.6	13
246	Next European Torus Physics Basis. Fusion Science and Technology, 1988, 14, 30-48.	0.6	25
247	On certain properties of the electric vector potential in eddy-current problems. IEE Proceedings A: Physical Science Measurement and Instrumentation Management and Education Reviews, 1987, 134, 814.	0.1	0
248	A T formulation for 3D finite element Eddy current computation. IEEE Transactions on Magnetics, 1985, 21, 2299-2302.	2.1	25
249	Plasma position and shape control for ITER. , 0, , .		3
250	Can better modelling improve tokamak control?. , 0, , .		4
251	Current, position, and shape control of tokamak plasmas: a literature review. , 0, , .		12
252	Collisionless losses of fast ions in the Divertor Tokamak Test due to toroidal field ripple. Nuclear Fusion, 0, , .	3.5	6