
## **Zu-Hang Sheng**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377111/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                            | 9.1  | 3,122     |
| 2  | Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature<br>Reviews Neuroscience, 2012, 13, 77-93.            | 10.2 | 678       |
| 3  | Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term<br>Facilitation. Cell, 2008, 132, 137-148.               | 28.9 | 497       |
| 4  | Mitochondrial trafficking and anchoring in neurons: New insight and implications. Journal of Cell<br>Biology, 2014, 204, 1087-1098.                   | 5.2  | 327       |
| 5  | Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical<br>Neurons. Current Biology, 2012, 22, 545-552.   | 3.9  | 279       |
| 6  | Inhibition of Neurotransmission by Peptides Containing the Synaptic Protein Interaction Site of N-Type<br>Ca2+ Channels. Neuron, 1996, 17, 781-788.   | 8.1  | 264       |
| 7  | Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits.<br>Journal of Cell Biology, 2016, 214, 103-119.  | 5.2  | 255       |
| 8  | MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. ELife, 2014, 3, e01958.           | 6.0  | 235       |
| 9  | Motile Axonal Mitochondria Contribute to the Variability of Presynaptic Strength. Cell Reports, 2013,<br>4, 413-419.                                  | 6.4  | 215       |
| 10 | Snapin: a SNARE–associated protein implicated in synaptic transmission. Nature Neuroscience, 1999, 2,<br>119-124.                                     | 14.8 | 210       |
| 11 | Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. Journal of Cell Biology, 2018, 217, 3127-3139.      | 5.2  | 203       |
| 12 | Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. Journal of Cell Biology, 2015, 209, 377-386.        | 5.2  | 202       |
| 13 | Snapin-Regulated Late Endosomal Transport Is Critical for Efficient Autophagy-Lysosomal Function in<br>Neurons. Neuron, 2010, 68, 73-86.              | 8.1  | 196       |
| 14 | Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. Journal of<br>Cell Biology, 2005, 170, 959-969.                   | 5.2  | 191       |
| 15 | Kinesin-1–syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. Journal of Cell Biology, 2013, 202, 351-364. | 5.2  | 185       |
| 16 | Regulation of mitochondrial transport in neurons. Experimental Cell Research, 2015, 334, 35-44.                                                       | 2.6  | 175       |
| 17 | The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends in<br>Cell Biology, 2017, 27, 403-416.                 | 7.9  | 158       |
| 18 | Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nature Cell<br>Biology, 2001, 3, 331-338.                          | 10.3 | 156       |

Zu-HANG SHENG

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modulation of neurotransmitter release by the second messenger-activated protein kinases:<br>Implications for presynaptic plasticity. , 2005, 105, 69-84.                                                         |      | 154       |
| 20 | Endolysosomal Deficits Augment Mitochondria Pathology in Spinal Motor Neurons of Asymptomatic fALS Mice. Neuron, 2015, 87, 355-370.                                                                               | 8.1  | 138       |
| 21 | Releasing Syntaphilin Removes Stressed Mitochondria from Axons Independent of Mitophagy under<br>Pathophysiological Conditions. Neuron, 2017, 94, 595-610.e6.                                                     | 8.1  | 136       |
| 22 | Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature<br>Cell Biology, 2004, 6, 941-953.                                                                             | 10.3 | 133       |
| 23 | Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is<br>Essential for Dendrite Growth of Cortical Neurons. Cell Reports, 2012, 2, 42-51.                                | 6.4  | 121       |
| 24 | Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal<br>Cord Injury. Cell Metabolism, 2020, 31, 623-641.e8.                                                            | 16.2 | 102       |
| 25 | Neuronal Soma-Derived Degradative Lysosomes Are Continuously Delivered to Distal Axons to<br>Maintain Local Degradation Capacity. Cell Reports, 2019, 28, 51-64.e4.                                               | 6.4  | 100       |
| 26 | Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9953-9958.        | 7.1  | 98        |
| 27 | Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts. Nature Communications, 2019, 10, 3645.                                                                       | 12.8 | 97        |
| 28 | KIF5B Motor Adaptor Syntabulin Maintains Synaptic Transmission in Sympathetic Neurons. Journal of<br>Neuroscience, 2009, 29, 13019-13029.                                                                         | 3.6  | 93        |
| 29 | Syntaphilin. Neuron, 2000, 25, 191-201.                                                                                                                                                                           | 8.1  | 90        |
| 30 | The Role of Snapin in Neurosecretion: Snapin Knock-Out Mice Exhibit Impaired Calcium-Dependent<br>Exocytosis of Large Dense-Core Vesicles in Chromaffin Cells. Journal of Neuroscience, 2005, 25,<br>10546-10555. | 3.6  | 87        |
| 31 | Revisiting LAMP1 as a marker for degradative autophagy-lysosomal organelles in the nervous system.<br>Autophagy, 2018, 14, 1472-1474.                                                                             | 9.1  | 87        |
| 32 | Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult <i>Caenorhabditis<br/>elegans</i> Neurons. Journal of Neuroscience, 2016, 36, 1373-1385.                                                        | 3.6  | 79        |
| 33 | Mechanisms for the maintenance and regulation of axonal energy supply. Journal of Neuroscience Research, 2019, 97, 897-913.                                                                                       | 2.9  | 75        |
| 34 | The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nature Metabolism, 2020, 2, 1077-1095.                                             | 11.9 | 75        |
| 35 | Dynein Light Chain LC8 Regulates Syntaphilin-Mediated Mitochondrial Docking in Axons. Journal of<br>Neuroscience, 2009, 29, 9429-9438.                                                                            | 3.6  | 69        |
| 36 | Snapin Facilitates the Synchronization of Synaptic Vesicle Fusion. Neuron, 2009, 61, 412-424.                                                                                                                     | 8.1  | 67        |

Zu-HANG SHENG

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron, 2021, 109, 3456-3472.e8.                                                           | 8.1  | 67        |
| 38 | Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nature Reviews Neuroscience, 2022, 23, 4-22.                                                                                                | 10.2 | 66        |
| 39 | Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron, 2022, 110, 1899-1923.                                                                                              | 8.1  | 62        |
| 40 | Effects of PKA-Mediated Phosphorylation of Snapin on Synaptic Transmission in Cultured Hippocampal<br>Neurons. Journal of Neuroscience, 2004, 24, 6476-6481.                                                                     | 3.6  | 59        |
| 41 | Moving or Stopping Mitochondria: Miro as a Traffic Cop by Sensing Calcium. Neuron, 2009, 61, 493-496.                                                                                                                            | 8.1  | 57        |
| 42 | Increased Axonal Mitochondrial Mobility Does Not Slow Amyotrophic Lateral Sclerosis (ALS)-like<br>Disease in Mutant SOD1 Mice. Journal of Biological Chemistry, 2011, 286, 23432-23440.                                          | 3.4  | 48        |
| 43 | Regulation of synaptic activity by snapinâ€mediated endolysosomal transport and sorting. EMBO<br>Journal, 2015, 34, 2059-2077.                                                                                                   | 7.8  | 41        |
| 44 | Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C. Developmental Cell, 2021, 56, 1452-1468.e8.                                       | 7.0  | 41        |
| 45 | Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Current Biology, 2021, 31, 3098-3114.e7.                                          | 3.9  | 39        |
| 46 | Deletion of Mitochondrial Anchoring Protects Dysmyelinating Shiverer: Implications for Progressive<br>MS. Journal of Neuroscience, 2015, 35, 5293-5306.                                                                          | 3.6  | 33        |
| 47 | Phosphorylation of Syntaphilin by cAMP-dependent Protein Kinase Modulates Its Interaction with<br>Syntaxin-1 and Annuls Its Inhibitory Effect on Vesicle Exocytosis. Journal of Biological Chemistry,<br>2004, 279, 18911-18919. | 3.4  | 32        |
| 48 | Axonal autophagosomes use the ride-on service for retrograde transport toward the soma.<br>Autophagy, 2015, 11, 1434-1436.                                                                                                       | 9.1  | 32        |
| 49 | Regional and developmental regulation of syntaphilin expression in the brain: a candidate molecular element of synaptic functional differentiation. Molecular Brain Research, 2003, 116, 38-49.                                  | 2.3  | 27        |
| 50 | Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions. Autophagy, 2017, 13, 1792-1794.                                                                                     | 9.1  | 25        |
| 51 | Developmental regulation of microtubuleâ€based trafficking and anchoring of axonal mitochondria in health and diseases. Developmental Neurobiology, 2021, 81, 284-299.                                                           | 3.0  | 25        |
| 52 | Uncovering the role of Snapin in regulating autophagy-lysosomal function. Autophagy, 2011, 7, 445-447.                                                                                                                           | 9.1  | 24        |
| 53 | Progressive endolysosomal deficits impair autophagic clearance beginning at early asymptomatic stages in fALS mice. Autophagy, 2015, 11, 1934-1936.                                                                              | 9.1  | 24        |
| 54 | Neuronal endolysosomal transport and lysosomal functionality in maintaining axonostasis. Journal of Cell Biology, 2022, 221, .                                                                                                   | 5.2  | 17        |

Zu-HANG SHENG

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Defending stressed mitochondria: uncovering the role of MUL1 in suppressing neuronal mitophagy.<br>Autophagy, 2020, 16, 176-178.                                                 | 9.1 | 13        |
| 56 | Characterization of Mitochondrial Transport in Neurons. Methods in Enzymology, 2014, 547, 75-96.                                                                                 | 1.0 | 12        |
| 57 | The secret life of degradative lysosomes in axons: delivery from the soma, enzymatic activity, and local autophagic clearance. Autophagy, 2020, 16, 167-168.                     | 9.1 | 11        |
| 58 | Lipid-mediated impairment of axonal lysosome transport contributing to autophagic stress.<br>Autophagy, 2021, 17, 1796-1798.                                                     | 9.1 | 10        |
| 59 | Inappropriate Intrusion of an Axonal Mitochondrial Anchor into Dendrites Causes<br>Neurodegeneration. Cell Reports, 2019, 29, 685-696.e5.                                        | 6.4 | 9         |
| 60 | Syntaphilin Binds to Dynamin-1 and Inhibits Dynamin-dependent Endocytosis. Journal of Biological<br>Chemistry, 2003, 278, 41221-41226.                                           | 3.4 | 8         |
| 61 | Defects in syntabulin-mediated synaptic cargo transport associate with autism-like synaptic dysfunction and social behavioral traits. Molecular Psychiatry, 2021, 26, 1472-1490. | 7.9 | 6         |
| 62 | Multidisciplinary Approaches for Characterizing Synaptic Vesicle Proteins. Current Protocols in Neuroscience, 2004, 28, Unit 2.7.                                                | 2.6 | 5         |
| 63 | Mitochondrial Dynamics and Axonal Transport. , 2011, , 139-168.                                                                                                                  |     | 1         |
| 64 | Neurobiology: A pathogenic tug of war. Current Biology, 2021, 31, R491-R493.                                                                                                     | 3.9 | 0         |
| 65 | Methods for Studying Axonal Autophagosome Dynamics in Adult Dorsal Root Ganglion Neurons.<br>Neuromethods, 2022, , 99-114.                                                       | 0.3 | 0         |
| 66 | Modulation of Neurotransmitter Release and Presynaptic Plasticity by Protein Phosphorylation. , 2008, , 187-206.                                                                 |     | 0         |
| 67 | Remodeling mitochondrial transport and cellular energetics in axonal regeneration and spinal cord injury. , 2022, , 199-213.                                                     |     | 0         |