Carmen Bedia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376247/publications.pdf Version: 2024-02-01

CADMEN REDIA

#	Article	IF	CITATIONS
1	Lipidomic analysis of single and combined effects of polyethylene microplastics and polychlorinated biphenyls on human hepatoma cells. Journal of Hazardous Materials, 2022, 421, 126777.	12.4	36
2	Metabolomics in environmental toxicology: Applications and challenges. Trends in Environmental Analytical Chemistry, 2022, 34, e00161.	10.3	24
3	Introduction to Data Analysis in Omics Sciences. , 2021, , 226-240.		0
4	Untargeted metabolomics of prostate cancer zwitterionic and positively charged compounds in urine. Analytica Chimica Acta, 2021, 1158, 338381.	5.4	24
5	Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia. Atmosphere, 2021, 12, 744.	2.3	10
6	Multimodal multisample spectroscopic imaging analysis of tumor tissues using multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems, 2021, 215, 104366.	3.5	4
7	MSroi: A pre-processing tool for mass spectrometry-based studies. Chemometrics and Intelligent Laboratory Systems, 2021, 215, 104333.	3.5	19
8	An underground strategy to increase mercury tolerance in the salt marsh halophyte Juncus maritimus Lam.: Lipid remodelling and Hg restriction. Environmental and Experimental Botany, 2021, 191, 104619.	4.2	2
9	Application of chemometric methods to the analysis of multimodal chemical images of biological tissues. Analytical and Bioanalytical Chemistry, 2020, 412, 5179-5190.	3.7	13
10	Mass Spectrometry Imaging: Chemometric Data Analysis. , 2020, , 381-394.		0
11	Stoichiometric gene-to-reaction associations enhance model-driven analysis performance: Metabolic response to chronic exposure to Aldrin in prostate cancer. BMC Genomics, 2019, 20, 652.	2.8	12
12	GM2-GM3 gangliosides ratio is dependent on GRP94 through down-regulation of GM2-AP cofactor in brain metastasis cells. Scientific Reports, 2019, 9, 14241.	3.3	6
13	Exposure to chlorpyrifos induces morphometric, biochemical and lipidomic alterations in green beans (Phaseolus vulgaris). Ecotoxicology and Environmental Safety, 2018, 156, 25-33.	6.0	25
14	Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets. Analytical Chemistry, 2018, 90, 6757-6765.	6.5	31
15	Validation of the Regions of Interest Multivariate Curve Resolution (ROIMCR) procedure for untargeted LC-MS lipidomic analysis. Analytica Chimica Acta, 2018, 1025, 80-91.	5.4	25
16	Chemometric Strategies for Peak Detection and Profiling from Multidimensional Chromatography. Proteomics, 2018, 18, e1700327.	2.2	16
17	Deciphering the Underlying Metabolomic and Lipidomic Patterns Linked to Thermal Acclimation in <i>Saccharomyces cerevisiae</i> . Journal of Proteome Research, 2018, 17, 2034-2044.	3.7	14
18	Application of a sparseness constraint in multivariate curve resolution– Alternating least squares. Analytica Chimica Acta, 2018, 1000, 100-108.	5.4	32

CARMEN BEDIA

#	Article	IF	CITATIONS
19	Preprocessing Tools Applied to Improve the Assessment of Aldrin Effects on Prostate Cancer Cells Using Raman Spectroscopy. Applied Spectroscopy, 2018, 72, 489-500.	2.2	8
20	Experimental Approaches in Omic Sciences. Comprehensive Analytical Chemistry, 2018, 82, 13-36.	1.3	2
21	Applications of Metabolomics Analysis in Environmental Research. Comprehensive Analytical Chemistry, 2018, 82, 533-582.	1.3	15
22	Introduction to the Data Analysis Relevance in the Omic Era. Comprehensive Analytical Chemistry, 2018, , 1-12.	1.3	1
23	Untargeted lipidomic analysis of primary human epidermal melanocytes acutely and chronically exposed to UV radiation. Molecular Omics, 2018, 14, 170-180.	2.8	11
24	Phenotypic and lipidomic characterization of primary human epidermal keratinocytes exposed to simulated solar UV radiation. Journal of Dermatological Science, 2018, 92, 97-105.	1.9	31
25	Analysis of multiple mass spectrometry images from different Phaseolus vulgaris samples by multivariate curve resolution. Talanta, 2017, 175, 557-565.	5.5	18
26	3-Ketosphinganine provokes the accumulation of dihydroshingolipids and induces autophagy in cancer cells. Molecular BioSystems, 2016, 12, 1166-1173.	2.9	12
27	Compression strategies for the chemometric analysis of mass spectrometry imaging data. Journal of Chemometrics, 2016, 30, 575-588.	1.3	27
28	Assessment of the effects of As(III) treatment on cyanobacteria lipidomic profiles by LC-MS and MCR-ALS. Analytical and Bioanalytical Chemistry, 2016, 408, 5829-5841.	3.7	12
29	<i>Legionella pneumophila</i> S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1901-1906.	7.1	115
30	Lipidomic data analysis: Tutorial, practical guidelines and applications. Analytica Chimica Acta, 2015, 885, 1-16.	5.4	95
31	Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors. Environmental Research, 2015, 140, 18-31.	7.5	36
32	Activity of neutral and alkaline ceramidases on fluorogenic N-acylated coumarin-containing aminodiols. Journal of Lipid Research, 2015, 56, 2019-2028.	4.2	13
33	Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. Molecular BioSystems, 2015, 11, 3397-3406.	2.9	42
34	A non-target chemometric strategy applied to UPLC-MS sphingolipid analysis of a cell line exposed to chlorpyrifos pesticide: A feasibility study. Microchemical Journal, 2014, 117, 255-261.	4.5	15
35	Genetic Disorders of Simple Sphingolipid Metabolism. Handbook of Experimental Pharmacology, 2013, , 127-152.	1.8	3
36	The nonlysosomal βâ€glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB Journal, 2013, 27, 489-498.	0.5	39

CARMEN BEDIA

#	Article	IF	CITATIONS
37	Ceramide–Antiestrogen Nanoliposomal Combinations—Novel Impact of Hormonal Therapy in Hormone-Insensitive Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 2352-2361.	4.1	45
38	Sphingolipid Modulation: A Strategy for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 285-302.	1.7	22
39	Acid Ceramidase Expression Modulates the Sensitivity of A375 Melanoma Cells to Dacarbazine. Journal of Biological Chemistry, 2011, 286, 28200-28209.	3.4	71
40	Regulation of Autophagy by Sphingolipids. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 844-853.	1.7	48
41	Ceramidases in Hematological Malignancies: Senseless or Neglected Target?. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 830-843.	1.7	12
42	A simple fluorogenic method for determination of acid ceramidase activity and diagnosis of Farber disease. Journal of Lipid Research, 2010, 51, 3542-3547.	4.2	53
43	Disruption of Sphingosine 1-Phosphate Lyase Confers Resistance to Chemotherapy and Promotes Oncogenesis through Bcl-2/Bcl-xL Upregulation. Cancer Research, 2009, 69, 9346-9353.	0.9	103
44	Synthesis of a Fluorogenic Analogue of Sphingosineâ€1â€Phosphate and Its Use to Determine Sphingosineâ€1â€Phosphate Lyase Activity. ChemBioChem, 2009, 10, 820-822.	2.6	30
45	Aminocyclitol‣ubstituted Phytoceramides and their Effects on iNKT Cell Stimulation. ChemMedChem, 2009, 4, 1608-1613.	3.2	21
46	Synthesis and Biological Activity of a Novel Inhibitor of Dihydroceramide Desaturase. ChemMedChem, 2008, 3, 946-953.	3.2	68
47	Cytotoxicity and acid ceramidase inhibitory activity of 2-substituted aminoethanol amides. Chemistry and Physics of Lipids, 2008, 156, 33-40.	3.2	35
48	In vivo delivery of human acid ceramidase via cord blood transplantation and direct injection of lentivirus as novel treatment approaches for Farber disease. Molecular Genetics and Metabolism, 2008, 95, 133-141.	1.1	32
49	Synthesis of a Novel Ceramide Analogue and its Use in a High-Throughput Fluorogenic Assay for Ceramidases. ChemBioChem, 2007, 8, 642-648.	2.6	53
50	Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chemistry and Physics of Lipids, 2006, 144, 69-84.	3.2	39
51	Analogs of the dihydroceramide desaturase inhibitor GT11 modified at the amide function: synthesis and biological activities. Organic and Biomolecular Chemistry, 2005, 3, 3707.	2.8	30