Jeffrey R Harmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375648/publications.pdf

Version: 2024-02-01

87888 128289 4,233 111 38 60 citations g-index h-index papers 122 122 122 4642 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
2	Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148523.	1.0	6
3	An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catalysis, 2022, 12, 1614-1625.	11.2	29
4	The Cytochrome P450 OxyA from the Kistamicin Biosynthesis Cyclization Cascade is Highly Sensitive to Oxidative Damage. Frontiers in Chemistry, 2022, 10, 868240.	3.6	6
5	Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148579.	1.0	3
6	Enzyme Electrode Biosensors for <i>N</i> -Hydroxylated Prodrugs Incorporating the Mitochondrial Amidoxime Reducing Component. Analytical Chemistry, 2022, 94, 9208-9215.	6.5	5
7	Copper Complexes of Benzoylacetone Bis-Thiosemicarbazones: Metal and Ligand Based Redox Reactivity. Australian Journal of Chemistry, 2021, 74, 34.	0.9	4
8	Active site architecture reveals coordination sphere flexibility and specificity determinants in a group of closely related molybdoenzymes. Journal of Biological Chemistry, 2021, 296, 100672.	3.4	7
9	A Trap-Door Mechanism for Zinc Acquisition by <i>Streptococcus pneumoniae</i> .	4.1	8
10	Understanding the Mechanistic Requirements for Efficient and Stereoselective Alkene Epoxidation by a Cytochrome P450 Enzyme. ACS Catalysis, 2021, 11, 1995-2010.	11.2	30
11	Mapping the Pathway to Organocopper(II) Complexes Relevant to Atom Transfer Radical Polymerization. Inorganic Chemistry, 2021, 60, 10648-10655.	4.0	5
12	TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments. Biophysical Journal, 2021, 120, 4501-4511.	0.5	5
13	Nonâ€Oxidoâ€Vanadium(IV) Metalloradical Complexes with Bidentate 1,2â€Dithienylethene Ligands: Observation of Reversible Cyclization of the Ligand Scaffold in Solution. Chemistry - A European Journal, 2020, 26, 1335-1343.	3.3	4
14	The oxidation-reduction and electrocatalytic properties of CO dehydrogenase from Oligotropha carboxidovorans. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148118.	1.0	9
15	Engineering proton conductivity in melanin using metal doping. Journal of Materials Chemistry B, 2020, 8, 8050-8060.	5 . 8	27
16	Biophysical Techniques for Distinguishing Ligand Binding Modes in Cytochrome P450 Monooxygenases. Biochemistry, 2020, 59, 1038-1050.	2.5	20
17	Cross-linking, DEER-spectroscopy and molecular dynamics confirm the inward facing state of P-glycoprotein in a lipid membrane. Journal of Structural Biology, 2020, 211, 107513.	2.8	7
18	Amyloid β chaperone â€" lipocalin-type prostaglandin D synthase acts as a peroxidase in the presence of heme. Biochemical Journal, 2020, 477, 1227-1240.	3.7	8

#	Article	IF	CITATIONS
19	Phosphanyl Cyanophosphide Salts: Versatile PCN Building Blocks. Angewandte Chemie, 2019, 131, 11551-11555.	2.0	10
20	Phosphanyl Cyanophosphide Salts: Versatile PCN Building Blocks. Angewandte Chemie, 2019, 131, 11666.	2.0	0
21	Trivalent copper stabilised by acetylacetone dithiocarbazate Schiff base ligands: structural, spectroscopic and electrochemical properties. Dalton Transactions, 2019, 48, 15501-15514.	3.3	11
22	Metastable phosphorus neutral monoradical: a key intermediate in the bicyclic cage formation. Dalton Transactions, 2019, 48, 2549-2553.	3.3	13
23	Phosphanyl Cyanophosphide Salts: Versatile PCN Building Blocks. Angewandte Chemie - International Edition, 2019, 58, 11429-11433.	13.8	15
24	Optimizing the transformation of HYSCORE data using the maximum entropy algorithm. Journal of Magnetic Resonance, 2019, 301, 30-39.	2.1	2
25	A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron–Electron Resonance Spectroscopy. Journal of the American Chemical Society, 2018, 140, 2514-2527.	13.7	22
26	L ₃ C ₃ P ₃ : Tricarbontriphosphide Tricyclic Radicals and Cations Stabilized by Cyclic (alkyl)(amino)carbenes. Angewandte Chemie, 2018, 130, 204-208.	2.0	22
27	Heteroatomâ€Interchanged Isomers of Lissoclinamide 5: Copper(II) Complexation, Halide Binding, and Biological Activity. European Journal of Organic Chemistry, 2018, 2018, 1465-1476.	2.4	8
28	The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 19-27.	1.0	7
29	L ₃ C ₃ P ₃ : Tricarbontriphosphide Tricyclic Radicals and Cations Stabilized by Cyclic (alkyl)(amino)carbenes. Angewandte Chemie - International Edition, 2018, 57, 198-202.	13.8	42
30	A New Mixed-Valence Mn(II)Mn(III) Compound With Catalase and Superoxide Dismutase Activities. Frontiers in Chemistry, 2018, 6, 491.	3.6	23
31	Efficient biosynthesis of heterodimeric C3-aryl pyrroloindoline alkaloids. Nature Communications, 2018, 9, 4428.	12.8	53
32	(L) ₂ C ₂ P ₂ : Dicarbondiphosphide Stabilized by Nâ€Heterocyclic Carbenes or Cyclic Diamido Carbenes. Angewandte Chemie - International Edition, 2017, 56, 5744-5749.	13.8	102
33	(L) ₂ C ₂ P ₂ : Dicarbondiphosphide Stabilized by Nâ€Heterocyclic Carbenes or Cyclic Diamido Carbenes. Angewandte Chemie, 2017, 129, 5838-5843.	2.0	55
34	Reaction mechanism of the metallohydrolase CpsB from Streptococcus pneumoniae, a promising target for novel antimicrobial agents. Dalton Transactions, 2017, 46, 13194-13201.	3.3	8
35	Elucidating the mechanism of the Ley–Griffith (TPAP) alcohol oxidation. Chemical Science, 2017, 8, 8435-8442.	7.4	18
36	CW and Pulse EPR of Cytochrome P450 to Determine Structure and Function. Biological Magnetic Resonance, 2017, , 103-142.	0.4	5

#	Article	IF	CITATIONS
37	Design of silk proteins with increased heme binding capacity and fabrication of silk-heme materials. Journal of Inorganic Biochemistry, 2017, 177, 219-227.	3.5	5
38	Characterization of a highly efficient antibiotic-degrading metallo- \hat{l}^2 -lactamase obtained from an uncultured member of a permafrost community. Metallomics, 2017, 9, 1157-1168.	2.4	17
39	Electronic Delocalization in the Radical Cations of Porphyrin Oligomer Molecular Wires. Journal of the American Chemical Society, 2017, 139, 10461-10471.	13.7	67
40	High Resolution Crystal Structures of the Acetohydroxyacid Synthaseâ€Pyruvate Complex Provide New Insights into Its Catalytic Mechanism. ChemistrySelect, 2017, 2, 11981-11988.	1.5	6
41	Controlling Au Photodeposition on Large ZnO Nanoparticles. ACS Applied Materials & Amp; Interfaces, 2016, 8, 14271-14283.	8.0	58
42	From 0 to II in Oneâ€Electron Steps: A Series of Ruthenium Complexes Supported by TropPPh 2. Angewandte Chemie - International Edition, 2016, 55, 11999-12002.	13.8	12
43	Zeroâ€Valent Aminoâ€Olefin Cobalt Complexes as Catalysts for Oxygen Atom Transfer Reactions from Nitrous Oxide. Angewandte Chemie, 2016, 128, 15549-15554.	2.0	22
44	Zeroâ€Valent Aminoâ€Olefin Cobalt Complexes as Catalysts for Oxygen Atom Transfer Reactions from Nitrous Oxide. Angewandte Chemie - International Edition, 2016, 55, 15323-15328.	13.8	26
45	AlMâ€1: An Antibioticâ€Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry - A European Journal, 2016, 22, 17704-17714.	3.3	28
46	From 0 to II in Oneâ€Electron Steps: A Series of Ruthenium Complexes Supported by TropPPh 2. Angewandte Chemie, 2016, 128, 12178-12181.	2.0	7
47	Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(<scp>ii</scp>) centres. Physical Chemistry Chemical Physics, 2016, 18, 5981-5994.	2.8	48
48	Isolation and Characterization of a Bismuth(II) Radical. Angewandte Chemie - International Edition, 2015, 54, 10630-10633.	13.8	93
49	Diaryldichalcogenide radical cations. Chemical Science, 2015, 6, 497-504.	7.4	40
50	Stable GaX2, InX2 and TIX2 radicals. Nature Chemistry, 2014, 6, 315-319.	13.6	101
51	EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin. Biophysical Chemistry, 2014, 190-191, 8-16.	2.8	4
52	Insights into the Electronic Structure of Cu ^{II} Bound to an Imidazole Analogue of Westiellamide. Inorganic Chemistry, 2014, 53, 12323-12336.	4.0	14
53	Non-uniform sampling in EPR – optimizing data acquisition for HYSCORE spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 16378-16382.	2.8	8
54	Sodium phosphaethynolate, Na(OCP), as a "P―transfer reagent for the synthesis of N-heterocyclic carbene supported P ₃ and PAsP radicals. Chemical Science, 2014, 5, 1545-1554.	7.4	206

#	Article	IF	CITATIONS
55	Development of a Metalâ€lonâ€Mediated Base Pair for Electron Transfer in DNA. Chemistry - A European Journal, 2013, 19, 12547-12552.	3.3	70
56	Multielement NMR Studies of the Liquid–Liquid Phase Separation and the Metal-to-Nonmetal Transition in Fluid Lithium– and Sodium–Ammonia Solutions. Journal of Physical Chemistry B, 2013, 117, 13322-13334.	2.6	13
57	140 H/D Isotopomers Identified by Long-Range NMR Hyperfine Shifts in Ruthenium(III) Ammine Complexes. Hyperconjugation in Ru–NH ₃ Bonding. Inorganic Chemistry, 2013, 52, 7280-7294.	4.0	3
58	Structural model for the protein-translocating element of the twin-arginine transport system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1092-101.	7.1	99
59	Orientation-Selective DEER Using Rigid Spin Labels, Cofactors, Metals, and Clusters. Structure and Bonding, 2013, , 283-327.	1.0	24
60	Characterisation of the paramagnetic [2Fe–2S]+ centre in palustrisredoxin-B (PuxB) from Rhodopseudomonas palustris CGA009: g-matrix determination and spin coupling analysis. Physical Chemistry Chemical Physics, 2012, 14, 6526.	2.8	15
61	EPR Spectroscopic Studies of the Fe–S Clusters in the O ₂ -Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe–3S] Cluster by HYSCORE. Journal of the American Chemical Society, 2012, 134, 15581-15594.	13.7	88
62	Electron Tunneling in Lithium–Ammonia Solutions Probed by Frequency-Dependent Electron Spin Relaxation Studies. Journal of the American Chemical Society, 2012, 134, 9209-9218.	13.7	13
63	DEER-Stitch: Combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. Journal of Magnetic Resonance, 2012, 223, 98-106.	2.1	30
64	An aqueous non-heme Fe(iv)oxo complex with a basic group in the second coordination sphere. Chemical Communications, 2012, 48, 10880.	4.1	30
65	Structure and function of CYP108D1 from <i>Novosphingobium aromaticivorans</i> DSM12444: an aromatic hydrocarbon-binding P450 enzyme. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 277-291.	2. 5	25
66	Covalency in the 4f Shell of <i>tris</i> -Cyclopentadienyl Ytterbium (YbCp ₃)â€"A Spectroscopic Evaluation. Journal of the American Chemical Society, 2011, 133, 20644-20660.	13.7	56
67	Electromeric Rhodium Radical Complexes. Angewandte Chemie - International Edition, 2010, 49, 385-389.	13.8	33
68	Electromeric Rhodium Radical Complexes. Angewandte Chemie - International Edition, 2010, 49, 1909-1909.	13.8	2
69	How Escherichia coli Is Equipped to Oxidize Hydrogen under Different Redox Conditions. Journal of Biological Chemistry, 2010, 285, 3928-3938.	3.4	204
70	How Escherichia coli is equipped to oxidize hydrogen under different redox conditions Journal of Biological Chemistry, 2010, 285, 20421.	3.4	5
71	Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1930-1935.	7.1	116
72	Size dependent oxygen buffering capacity of ceria nanocrystals. Chemical Communications, 2010, 46, 1887-1889.	4.1	201

#	Article	IF	Citations
7 3	Binding of Coenzyme B Induces a Major Conformational Change in the Active Site of Methyl-Coenzyme M Reductase. Journal of the American Chemical Society, 2010, 132, 567-575.	13.7	48
74	A critical evaluation of the mode of incorporation of nitrogen in doped anatase photocatalysts. Physical Chemistry Chemical Physics, 2010, 12, 960-969.	2.8	52
7 5	Using EPR to follow reversible dihydrogen addition to paramagnetic clusters of high hydride count: [Rh6(PCy3)6H12]+and [Rh6(PCy3)6H14]+. Dalton Transactions, 2010, 39, 1726-1733.	3.3	8
76	Syntheses, Structures and Electronic Properties of Zwitterionic Iron(II) and Cobalt(II) Complexes Featuring Ambidentate Tris(pyrazolyl)methanide Ligands. Chemistry - A European Journal, 2009, 15, 4350-4365.	3.3	45
77	Cryogenic 35GHz pulse ENDOR probehead accommodating large sample sizes: Performance and applications. Journal of Magnetic Resonance, 2009, 200, 81-87.	2.1	41
78	Electron Spin Resonance Investigation of Hydrogen Absorption in Ball-Milled Graphite. Journal of Physical Chemistry C, 2009, 113, 5409-5416.	3.1	41
79	Structural information from orientationally selective DEER spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 6840.	2.8	109
80	Advanced Pulse EPR Methods for the Characterization of Metalloproteins. Biological Magnetic Resonance, 2009, , 13-61.	0.4	17
81	Cryogenic Q-band (35GHz) probehead featuring large excitation microwave fields for pulse and continuous wave electron paramagnetic resonance spectroscopy: Performance and applications. Journal of Magnetic Resonance, 2008, 190, 280-291.	2.1	16
82	Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. Journal of Biological Inorganic Chemistry, 2008, 13, 1275-1289.	2.6	11
83	Rhodium and Iridium Amino, Amido, and Aminyl Radical Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 4691-4703.	2.0	28
84	Photoisomerization of a Fullerene Dimer. Journal of Physical Chemistry C, 2008, 112, 2802-2804.	3.1	38
85	A comparative study of the electronic structures of SrCu2O2 and PbCu2O2 by density functional theory, high resolution X-ray photoemission and electron paramagnetic resonance spectroscopy. Journal of Materials Chemistry, 2008, 18, 2798.	6.7	21
86	A Nickel Hydride Complex in the Active Site of Methyl-Coenzyme M Reductase: Implications for the Catalytic Cycle. Journal of the American Chemical Society, 2008, 130, 10907-10920.	13.7	68
87	Formation of a Nickelâ^'Methyl Species in Methyl-Coenzyme M Reductase, an Enzyme Catalyzing Methane Formation. Journal of the American Chemical Society, 2007, 129, 11028-11029.	13.7	74
88	Mechanistic Insights into Stereoselective Catalysisâ€"The Effects of Counterions in a Cullâ€"Bissulfoximine-Catalyzed Dielsâ€"Alder Reaction. Chemistry - A European Journal, 2007, 13, 1842-1850.	3.3	20
89	Metalloenzyme-Inspired Catalysis: Selective Oxidation of Primary Alcohols with an Iridium–Aminyl-Radical Complex. Angewandte Chemie - International Edition, 2007, 46, 3567-3570.	13.8	108
90	Radio frequencies in EPR: Conventional and advanced use. Applied Magnetic Resonance, 2007, 31, 627-647.	1.2	5

#	Article	IF	Citations
91	Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy. Journal of Biological Inorganic Chemistry, 2007, 12, 1097-1105.	2.6	15
92	New perspectives for olefin complexes: Synthesis and characterisation of stable rhodium(0) and iridium(0) complexes. Special Publication - Royal Society of Chemistry, 2007, , 222-239.	0.0	0
93	A Tetracoordinated Rhodium Aminyl Radical Complex. Journal of the American Chemical Society, 2006, 128, 6578-6580.	13.7	70
94	Synthesis of a Rhodaazacyclopropane and Characterization of Its Radical Cation by EPR Spectroscopy. Angewandte Chemie - International Edition, 2006, 45, 3265-3269.	13.8	25
95	A Nickel–Alkyl Bond in an Inactivated State of the Enzyme Catalyzing Methane Formation. Angewandte Chemie - International Edition, 2006, 45, 3602-3607.	13.8	49
96	Pulse EPR Methods for Studying Chemical and Biological Samples Containing Transition Metals. Helvetica Chimica Acta, 2006, 89, 2495-2521.	1.6	44
97	A Stable Aminyl Radical Metal Complex. Science, 2005, 307, 235-238.	12.6	203
98	Spin Density and Coenzyme M Coordination Geometry of the ox1 Form of Methyl-Coenzyme M Reductase:  A Pulse EPR Study. Journal of the American Chemical Society, 2005, 127, 17744-17755.	13.7	54
99	Stereochemical Control of the Redox Potential of Tetracoordinate Rhodium Complexes. Angewandte Chemie - International Edition, 2004, 43, 2567-2570.	13.8	13
100	"Naked―Phosphanediide Chains and their Fragmentation into Diphosphene Radical Anions. Angewandte Chemie - International Edition, 2004, 43, 4093-4097.	13.8	55
101	The Coordination Chemistry of the Pentadentate 2,2,6,6-Tetrakis(aminomethyl)-4-azaheptane (ditame). European Journal of Inorganic Chemistry, 2003, 2003, 1340-1354.	2.0	14
102	TROPDAD: A New Ligand for the Synthesis of Water-Stable Paramagnetic[16+1]-Electron Rhodium and Iridium Complexes. Chemistry - A European Journal, 2003, 9, 3859-3866.	3.3	20
103	Spectroscopic Investigations of Bis(sulfoximine) Copper(II) Complexes and Their Relevance in Asymmetric Catalysis. Journal of the American Chemical Society, 2003, 125, 6222-6227.	13.7	54
104	Characterization of the MCRred2 form of methyl-coenzyme M reductase: a pulse EPR and ENDOR study. Journal of Biological Inorganic Chemistry, 2003, 8, 586-593.	2.6	33
105	Coenzyme B Induced Coordination of Coenzyme M via Its Thiol Group to Ni(I) of F430in Active Methyl-Coenzyme M Reductase. Journal of the American Chemical Society, 2003, 125, 4988-4989.	13.7	59
106	A Pulse EPR and ENDOR Investigation of the Electronic Structure of a if -Carbon-Bonded Cobalt(IV) Corrole. Journal of Physical Chemistry B, 2002, 106, 2801-2811.	2.6	54
107	High-Resolution EPR Spectroscopic Investigations of a Homologous Set of d9-Cobalt(0), d9-Rhodium(0), and d9-Iridium(0) Complexes. Chemistry - A European Journal, 2002, 8, 601-611.	3.3	47
108	Corrin nitrogens and remote dimethylbenzimidazole nitrogen interactions in Cob(II)alamin studied with HYSCORE at X- and Q-band. Chemical Physics Letters, 2002, 358, 8-16.	2.6	27

#	Article	IF	CITATIONS
109	Highly Efficient Phosphodiester Hydrolysis Promoted by a Dinuclear Copper(II) Complex. Inorganic Chemistry, 2001, 40, 4918-4927.	4.0	58
110	A novel approach for coal characterization by NMR spectroscopy: global analysis of proton T1 and T2 relaxations. Fuel, 2001, 80, 417-425.	6.4	45
111	A rapid coal characterisation analysis by low-resolution NMR spectroscopy and partial least-squares regression. Fuel, 2001, 80, 1341-1349.	6.4	7