
Miroslaw Cygler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural biology of the invasion arsenal of Gramâ€negative bacterial pathogens. FEBS Journal, 2022, 289, 1385-1427.	2.2	5
2	Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen. Journal of Molecular Biology, 2022, 434, 167357.	2.0	43
3	Structural study of <i>Legionella pneumophila</i> effector DotY (Lpg0294), a component of the Dot/Icm type IV secretion system. Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 276-280.	0.4	0
4	The KH domain facilitates the substrate specificity and unwinding processivity of DDX43 helicase. Journal of Biological Chemistry, 2021, 296, 100085.	1.6	15
5	An Indispensable Role for the MavE Effector of Legionella pneumophila in Lysosomal Evasion. MBio, 2021, 12, .	1.8	5
6	Structural and functional study ofLegionella pneumophilaeffector RavA. Protein Science, 2021, 30, 940-955.	3.1	6
7	Salmonella effector SopD promotes plasma membrane scission by inhibiting Rab10. Nature Communications, 2021, 12, 4707.	5.8	8
8	Structural and Functional Characterization of LegionellaÂpneumophila Effector MavL. Biomolecules, 2021, 11, 1802.	1.8	5
9	N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nature Communications, 2021, 12, 6902.	5.8	15
10	<i>Legionella</i> effector LegA15/AnkH contains an unrecognized cysteine protease-like domain and displays structural similarity to LegA3/AnkD, but differs in host cell localization. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1535-1542.	1.1	1
11	The <i>Legionella</i> kinase LegK7 exploits the Hippo pathway scaffold protein MOB1A for allostery and substrate phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14433-14443.	3.3	10
12	Interaction of the Ankyrin H Core Effector of <i>Legionella</i> with the Host LARP7 Component of the 7SK snRNP Complex. MBio, 2019, 10, .	1.8	27
13	Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways*. Molecular and Cellular Proteomics, 2019, 18, 1138-1156.	2.5	55
14	The structure of <i>Legionella</i> effector protein LpnE provides insights into its interaction with Oculocerebrorenal syndrome of Lowe (<scp>OCRL</scp>) protein. FEBS Journal, 2019, 286, 710-725.	2.2	9
15	Structure–function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. Journal of Biological Chemistry, 2018, 293, 4026-4036.	1.6	39
16	Regulation of Shigella Effector Kinase OspG through Modulation of Its Dynamic Properties. Journal of Molecular Biology, 2018, 430, 2096-2112.	2.0	8
17	Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. Journal of Biological Chemistry, 2018, 293, 11564-11573.	1.6	25
18	Legionella pneumophila effector Lem4 is a membrane-associated protein tyrosine phosphatase. Journal of Biological Chemistry, 2018, 293, 13044-13058.	1.6	14

#	Article	IF	CITATIONS
19	Structural And Functional Characterization Of Ulvan Degrading Polysaccharide Lyase Enzymes. FASEB Journal, 2018, 32, .	0.2	0
20	Structural Mimicry by a Bacterial F Box Effector Hijacks the Host Ubiquitin-Proteasome System. Structure, 2017, 25, 376-383.	1.6	22
21	New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture. ACS Chemical Biology, 2017, 12, 1269-1280.	1.6	60
22	Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Review of Proteomics, 2017, 14, 779-797.	1.3	11
23	Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nature Communications, 2017, 8, 1287.	5.8	144
24	Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from <i>Bacteroides thetaiotaomicron</i> (BT4657). Glycobiology, 2017, 27, 176-187.	1.3	14
25	Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathogens, 2017, 13, e1006394.	2.1	53
26	Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS ONE, 2016, 11, e0166643.	1.1	9
27	Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila. Journal of Biological Chemistry, 2016, 291, 15767-15777.	1.6	3
28	Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway. Biology, 2015, 4, 424-442.	1.3	10
29	Structural insight into effector proteins of Gramâ€negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Science, 2015, 24, 604-620.	3.1	17
30	Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7. Cell Reports, 2015, 12, 1508-1518.	2.9	83
31	Quaternary structure of <scp>W</scp> zzB and <scp>W</scp> zzE polysaccharide copolymerases. Protein Science, 2015, 24, 58-69.	3.1	19
32	Structure of CbpA J-Domain Bound to the Regulatory Protein CbpM Explains Its Specificity and Suggests Evolutionary Link between CbpM and Transcriptional Regulators. PLoS ONE, 2014, 9, e100441.	1.1	8
33	Uronic polysaccharide degrading enzymes. Current Opinion in Structural Biology, 2014, 28, 87-95.	2.6	49
34	A case study on the treatment of protein SIRAS data. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2686-2691.	2.5	3
35	NleH Defines a New Family of Bacterial Effector Kinases. Structure, 2014, 22, 250-259.	1.6	28
36	Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiology Reviews, 2014, 38, 1048-1065.	3.9	96

#	Article	IF	CITATIONS
37	Coiled-Coil Helix Rotation Selects Repressing or Activating State of Transcriptional Regulator DhaR. Structure, 2014, 22, 478-487.	1.6	18
38	Structural Basis for the Inhibition of Host Protein Ubiquitination by Shigella Effector Kinase OspG. Structure, 2014, 22, 878-888.	1.6	40
39	Structure of the N-terminal domain of the effector protein LegC3 from <i>Legionella pneumophila</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 436-441.	2.5	10
40	Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ ³ -4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas putida ATCC 17453. Applied and Environmental Microbiology, 2012, 78, 2200-2212.	1.4	51
41	Structural Characterization of Closely Related O-antigen Lipopolysaccharide (LPS) Chain Length Regulators. Journal of Biological Chemistry, 2012, 287, 15696-15705.	1.6	24
42	Protein-Protein Interactions in the β-Oxidation Part of the Phenylacetate Utilization Pathway. Journal of Biological Chemistry, 2012, 287, 37986-37996.	1.6	12
43	Sulfonation of glycopeptide antibiotics by sulfotransferase StaL depends on conformational flexibility of aglycone scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11824-11829.	3.3	14
44	Characterization of interactions between LPS transport proteins of the Lpt system. Biochemical and Biophysical Research Communications, 2011, 404, 1093-1098.	1.0	41
45	Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nature Structural and Molecular Biology, 2011, 18, 262-269.	3.6	138
46	Structure of Hydrogenase Maturation Protein HypF with Reaction Intermediates Shows Two Active Sites. Structure, 2011, 19, 1773-1783.	1.6	44
47	Synthesis, structural, and biological studies on a pseudodisaccharide containing a bicyclic, bridged carba-sugar. Tetrahedron: Asymmetry, 2011, 22, 1404-1410.	1.8	0
48	Asparagine 405 of heparin lyase II prevents the cleavage of glycosidic linkages proximate to a 3â€ <i>O</i> â€sulfoglucosamine residue. FEBS Letters, 2011, 585, 2461-2466.	1.3	18
49	Structural and enzymatic characterization of NanS (YjhS), a 9â€ <i>O</i> â€Acetyl <i>N</i> â€acetylneuraminic acid esterase from <i>Escherichia coli O157:H7</i> . Protein Science, 2011, 20, 1208-1219.	3.1	33
50	Structural and Functional Studies of the Escherichia coli Phenylacetyl-CoA Monooxygenase Complex. Journal of Biological Chemistry, 2011, 286, 10735-10743.	1.6	41
51	Structure-Guided Investigation of Lipopolysaccharide O-Antigen Chain Length Regulators Reveals Regions Critical for Modal Length Control. Journal of Bacteriology, 2011, 193, 3710-3721.	1.0	31
52	Structural and mechanistic insight into covalent substrate binding by <i>Escherichia coli</i> dihydroxyacetone kinase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1302-1307.	3.3	37
53	Catalytic Mechanism of Heparinase II Investigated by Site-directed Mutagenesis and the Crystal Structure with Its Substrate. Journal of Biological Chemistry, 2010, 285, 20051-20061.	1.6	39
54	Structural Basis for Fe–S Cluster Assembly and tRNA Thiolation Mediated by IscS Protein–Protein Interactions. PLoS Biology, 2010, 8, e1000354.	2.6	224

#	Article	IF	CITATIONS
55	Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology, 2010, 20, 1547-1573.	1.3	207
56	Structural Basis of the Regulation of the CbpA Co-chaperone by its Specific Modulator CbpM. Journal of Molecular Biology, 2010, 398, 111-121.	2.0	14
57	Structural Snapshots of Heparin Depolymerization by Heparin Lyase I. Journal of Biological Chemistry, 2009, 284, 34019-34027.	1.6	58
58	Structural and Functional Analysis of Campylobacter jejuni PseG. Journal of Biological Chemistry, 2009, 284, 20989-21000.	1.6	21
59	Structure-Function Analysis of <i>Escherichia coli</i> MnmG (GidA), a Highly Conserved tRNA-Modifying Enzyme. Journal of Bacteriology, 2009, 191, 7614-7619.	1.0	45
60	Structure of the Noncatalytic Domains and Global Fold of the Protein Disulfide Isomerase ERp72. Structure, 2009, 17, 651-659.	1.6	44
61	Sequence-structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends in Biochemical Sciences, 2009, 34, 78-84.	3.7	76
62	Trapping open and closed forms of FitE—A group III periplasmic binding protein. Proteins: Structure, Function and Bioinformatics, 2009, 75, 598-609.	1.5	29
63	Structure and Function of the Glycopeptide N-methyltransferase MtfA, a Tool for the Biosynthesis of Modified Glycopeptide Antibiotics. Chemistry and Biology, 2009, 16, 401-410.	6.2	37
64	Liquid chromatography–mass spectrometry to study chondroitin lyase action pattern. Analytical Biochemistry, 2009, 385, 57-64.	1.1	19
65	Preparation and Characterization of Bacterial Protein Complexes for Structural Analysis. Advances in Protein Chemistry and Structural Biology, 2009, 76, 1-42.	1.0	4
66	Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nature Structural and Molecular Biology, 2008, 15, 130-138.	3.6	103
67	Crystal structure of a dodecameric FMN-dependent UbiX-like decarboxylase (Pad1) from Escherichia coli O157: H7. Protein Science, 2008, 13, 3006-3016.	3.1	48
68	Molecular Dynamics—Solvated Interaction Energy Studies of Protein–Protein Interactions: The MP1–p14 Scaffolding Complex. Journal of Molecular Biology, 2008, 379, 787-802.	2.0	135
69	Improvement of the Thermostability and Activity of a Pectate Lyase by Single Amino Acid Substitutions, Using a Strategy Based on Melting-Temperature-Guided Sequence Alignment. Applied and Environmental Microbiology, 2008, 74, 1183-1189.	1.4	57
70	Structure of <scp>l</scp> -Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic <scp>l</scp> -Ascorbate Utilization Pathway of <i>Escherichia coli</i> : Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold. Journal of Bacteriology, 2008, 190, 8137-8144.	1.0	15
71	Structure of [NiFe] Hydrogenase Maturation Protein HypE from <i>Escherichia coli</i> and Its Interaction with HypF. Journal of Bacteriology, 2008, 190, 1447-1458.	1.0	43
72	The Contribution of Structural Proteomics to Understanding the Function of Hypothetical Proteins. , 2008, , 135-151.		0

#	Article	IF	CITATIONS
73	Crystal Structure of StaL, a Glycopeptide Antibiotic Sulfotransferase from Streptomyces toyocaensis. Journal of Biological Chemistry, 2007, 282, 13073-13086.	1.6	22
74	Quantitative continuous assay for hyaluronan synthase. Analytical Biochemistry, 2007, 361, 218-225.	1.1	13
75	NMR structure of YcgL, a conserved protein from Escherichia coli representing the DUF709 family, with a novel $\hat{I} \pm / \hat{I}^2 / \hat{I} \pm$ sandwich fold. Proteins: Structure, Function and Bioinformatics, 2007, 66, 1004-1007.	1.5	2
76	Structural context for proteinN-glycosylation in bacteria: The structure of PEB3, an adhesin fromCampylobacter jejuni. Protein Science, 2007, 16, 990-995.	3.1	38
77	Insights into the biology of Escherichia coli through structural proteomics. Journal of Structural and Functional Genomics, 2007, 8, 45-55.	1.2	5
78	CS Lyases: Structure, Activity, and Applications in Analysis and the Treatment of Diseases. Advances in Pharmacology, 2006, 53, 187-215.	1.2	50
79	The Architecture of the Multisubunit TRAPP I Complex Suggests a Model for Vesicle Tethering. Cell, 2006, 127, 817-830.	13.5	166
80	Domain Organization and Crystal Structure of the Catalytic Domain of E.coli RluF, a Pseudouridine Synthase that Acts on 23S rRNA. Journal of Molecular Biology, 2006, 359, 998-1009.	2.0	11
81	The Structure of the Exopolyphosphatase (PPX) from Escherichia coli O157:H7 Suggests a Binding Mode for Long Polyphosphate Chains. Journal of Molecular Biology, 2006, 359, 1249-1260.	2.0	51
82	Crystal Structure of the bb′ Domains of the Protein Disulfide Isomerase ERp57. Structure, 2006, 14, 1331-1339.	1.6	127
83	An Atypical Approach Identifies TYR234 as the Key Base Catalyst in Chondroitin AC Lyase. ChemBioChem, 2006, 7, 631-637.	1.3	13
84	Structural Snapshots of Escherichia coli Histidinol Phosphate Phosphatase along the Reaction Pathway. Journal of Biological Chemistry, 2006, 281, 37930-37941.	1.6	39
85	Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter pylori. Journal of Biological Chemistry, 2006, 281, 8907-8916.	1.6	88
86	Crystal Structure of Heparinase II from Pedobacter heparinus and Its Complex with a Disaccharide Product*. Journal of Biological Chemistry, 2006, 281, 15525-15535.	1.6	80
87	Biochemical and Crystallographic Studies Reveal a Specific Interaction Between TRAPP Subunits Trs33p and Bet3p. Traffic, 2005, 6, 1183-1195.	1.3	26
88	Crystal structure of ureidoglycolate hydrolase (AllA) from Escherichia coli O157:H7. Proteins: Structure, Function and Bioinformatics, 2005, 61, 454-459.	1.5	11
89	Crystal Structure of N-Succinylarginine Dihydrolase AstB, Bound to Substrate and Product, an Enzyme from the Arginine Catabolic Pathway of Escherichia coli. Journal of Biological Chemistry, 2005, 280, 15800-15808.	1.6	23
90	Site-directed Mutagenesis of the Active Site Region in the Quinate/Shikimate 5-Dehydrogenase YdiB of Escherichia coli. Journal of Biological Chemistry, 2005, 280, 7162-7169.	1.6	27

#	Article	IF	CITATIONS
91	Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16955-16960.	3.3	86
92	The crystal structure of CREG, a secreted glycoprotein involved in cellular growth and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18326-18331.	3.3	44
93	Crystallographic Trapping of the Glutamyl-CoA Thioester Intermediate of Family I CoA Transferases. Journal of Biological Chemistry, 2005, 280, 42919-42928.	1.6	34
94	Structural Similarity of YbeD Protein from Escherichia coli to Allosteric Regulatory Domains. Journal of Bacteriology, 2004, 186, 8083-8088.	1.0	12
95	The Structure of the MAPK Scaffold, MP1, Bound to Its Partner, p14. Journal of Biological Chemistry, 2004, 279, 23422-23430.	1.6	62
96	Crystal Structures of Escherichia coli ATP-Dependent Glucokinase and Its Complex with Glucose. Journal of Bacteriology, 2004, 186, 6915-6927.	1.0	75
97	The Structure of Chondroitin B Lyase Complexed with Glycosaminoglycan Oligosaccharides Unravels a Calcium-dependent Catalytic Machinery. Journal of Biological Chemistry, 2004, 279, 32882-32896.	1.6	91
98	Defining Substrate Characteristics from 3D Structure. Structure, 2004, 12, 521-522.	1.6	3
99	Letter to the Editor:1H,13C and15N resonance assignments of human 5,10-methenyltetrahydrofolate synthetase. Journal of Biomolecular NMR, 2004, 29, 547-548.	1.6	0
100	The structural genomics experimental pipeline: Insights from global target lists. Proteins: Structure, Function and Bioinformatics, 2004, 56, 201-210.	1.5	36
101	Design of a data model for developing laboratory information management and analysis systems for protein production. Proteins: Structure, Function and Bioinformatics, 2004, 58, 278-284.	1.5	27
102	Crystallization and preliminary X-ray analysis of heparinase II fromPedobacter heparinus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1644-1646.	2.5	7
103	Insights into function of PSI domains from structure of the Met receptor PSI domain. Biochemical and Biophysical Research Communications, 2004, 321, 234-240.	1.0	48
104	Crystal Structure of the RluD Pseudouridine Synthase Catalytic Module, an Enzyme that Modifies 23S rRNA and is Essential for Normal Cell Growth of Escherichia coli. Journal of Molecular Biology, 2004, 335, 87-101.	2.0	38
105	High-resolution Crystal Structure of Arthrobacter aurescens Chondroitin AC Lyase: An Enzyme–Substrate Complex Defines the Catalytic Mechanism. Journal of Molecular Biology, 2004, 337, 367-386.	2.0	97
106	Coverage of protein sequence space by current structural genomics targets. Journal of Structural and Functional Genomics, 2003, 4, 47-55.	1.2	13
107	Lectin control of protein folding and sorting in the secretory pathway. Trends in Biochemical Sciences, 2003, 28, 49-57.	3.7	170
108	The Final Player in the Coenzyme A Biosynthetic Pathway. Structure, 2003, 11, 899-900.	1.6	2

#	Article	IF	CITATIONS
109	Molecules ofEscherichia coliMobB assemble into densely packed hollow cylinders in a crystal lattice with 75% solvent content. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2348-2352.	2.5	1
110	Crystal structure of a trimeric form of dephosphocoenzyme A kinase from Escherichia coli. Protein Science, 2003, 12, 327-336.	3.1	31
111	Crystal Structure of Proteus vulgaris Chondroitin Sulfate ABC Lyase I at 1.9Ã Resolution. Journal of Molecular Biology, 2003, 328, 623-634.	2.0	98
112	Crystal Structure of Escherichia coli PdxA, an Enzyme Involved in the Pyridoxal Phosphate Biosynthesis Pathway. Journal of Biological Chemistry, 2003, 278, 43682-43690.	1.6	37
113	Structures of Shikimate Dehydrogenase AroE and Its Paralog YdiB. Journal of Biological Chemistry, 2003, 278, 19463-19472.	1.6	111
114	Contribution of Structural Genomics to Understanding the Biology of Escherichia coli. Journal of Bacteriology, 2003, 185, 3994-4002.	1.0	20
115	Essential Roles of Zinc Ligation and Enzyme Dimerization for Catalysis in the Aminoacylase-1/M20 Family. Journal of Biological Chemistry, 2003, 278, 44496-44504.	1.6	74
116	The Solution Structure of YbcJ from Escherichia coli Reveals a Recently Discovered αL Motif Involved in RNA Binding. Journal of Bacteriology, 2003, 185, 4204-4210.	1.0	12
117	Mechanism of action and NAD+-binding mode revealed by the crystal structure of L-histidinol dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1859-1864.	3.3	52
118	Crystal Structure of Escherichia coli Glucose-1-Phosphate Thymidylyltransferase (RffH) Complexed with dTTP and Mg2+. Journal of Biological Chemistry, 2002, 277, 44214-44219.	1.6	67
119	Design of Noncovalent Inhibitors of Human Cathepsin L. From the 96-Residue Proregion to Optimized Tripeptides. Journal of Medicinal Chemistry, 2002, 45, 5321-5329.	2.9	68
120	The Structure of the RlmB 23S rRNA Methyltransferase Reveals a New Methyltransferase Fold with a Unique Knot. Structure, 2002, 10, 1303-1315.	1.6	92
121	Crystal structure of D-ribose-5-phosphate isomerase (RpiA) fromEscherichia coli. Proteins: Structure, Function and Bioinformatics, 2002, 48, 737-740.	1.5	32
122	Structure of the 16S rRNA pseudouridine synthase RsuA bound to uracil and UMP. Nature Structural Biology, 2002, 9, 353-8.	9.7	32
123	The crystal structure of Escherichia coli MoeA, a protein from the molybdopterin synthesis pathway. Journal of Molecular Biology, 2001, 310, 419-431.	2.0	49
124	Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5′-phosphate and l-histidinol phosphate. Journal of Molecular Biology, 2001, 311, 761-776.	2.0	45
125	The Structure of Calnexin, an ER Chaperone Involved in Quality Control of Protein Folding. Molecular Cell, 2001, 8, 633-644.	4.5	363
126	Structure of Ca2+-loaded human grancalcin. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1843-1849.	2.5	16

#	Article	IF	CITATIONS
127	A structural genomics pilot project based on gene targets selected from Escherichia coli. Journal of Crystal Growth, 2001, 232, 421-425.	0.7	1
128	Structure of Apoptosis-Linked Protein ALG-2. Structure, 2001, 9, 267-275.	1.6	77
129	Crystallization and preliminary X-ray analysis of human grancalcin, a novel cytosolic Ca ²⁺ -binding protein present in leukocytes. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 772-774.	2.5	5
130	Crystallization and preliminary X-ray analysis of chondroitin sulfate ABC lyases I and II fromProteus vulgaris. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 904-906.	2.5	9
131	Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. Journal of Molecular Biology, 2000, 295, 939-951.	2.0	82
132	Crystal structure of human grancalcin, a member of the penta-EF-hand protein family11Edited by I. Wilson. Journal of Molecular Biology, 2000, 300, 1271-1281.	2.0	49
133	Crystallization and preliminary X-ray analysis of chondroitinase B fromFlavobacterium heparinum. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1055-1057.	2.5	8
134	Crystal structure of chondroitin AC lyase, a representative of a family of glycosaminoglycan degrading enzymes 1 1Edited by D. Rees. Journal of Molecular Biology, 1999, 288, 635-647.	2.0	96
135	Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 Ã resolution. Journal of Molecular Biology, 1999, 294, 1257-1269.	2.0	107
136	Crystal structure of wildâ€ŧype human procathepsin K. Protein Science, 1999, 8, 283-290.	3.1	58
137	Creation of a ribonuclease abzyme through site-directed mutagenesis. Nature Biotechnology, 1998, 16, 1065-1067.	9.4	22
138	The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 å resolution. Structure, 1998, 6, 173-182.	1.6	68
139	Crystallization and preliminary analysis of chondroitinase AC fromFlavobacterium heparinum. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 279-280.	2.5	9
140	[4] Lipases and hydrolase fold. Methods in Enzymology, 1997, 284, 85-107.	0.4	224
141	High-Level Production of RecombinantGeotrichum candidumLipases in YeastPichia pastoris. Protein Expression and Purification, 1997, 11, 35-40.	0.6	50
142	Restriction of intramolecular movements within the Cry1Aa toxin molecule ofBacillus thuringiensisthrough disulfide bond engineering. FEBS Letters, 1997, 410, 397-402.	1.3	110
143	[1] Structure as basis for understanding interfacial properties of lipases. Methods in Enzymology, 1997, 284, 3-27.	0.4	81
144	Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nature Structural Biology, 1997, 4, 532-538.	9.7	192

#	Article	IF	CITATIONS
145	The open conformation of a Pseudomonas lipase. Structure, 1997, 5, 187-202.	1.6	275
146	Crystal structure of two new bifunctional nonsubstrate type thrombin inhibitors complexed with human αâ€ŧhrombin. Protein Science, 1996, 5, 1174-1183.	3.1	16
147	Purification and characterization of aPenicillium sp. lipase which discriminates against diglycerides. Lipids, 1996, 31, 379-384.	0.7	32
148	Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure, 1996, 4, 405-416.	1.6	174
149	Crystallization of the bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase domain of the human trifunctional enzyme. , 1996, 26, 479-480.		6
150	Crystallization of a soluble form of the Kexlp serine carboxypeptidase from <i>Saccharomyces cerevisiae</i> . Protein Science, 1996, 5, 395-397.	3.1	10
151	Ca ²⁺ â€Binding domain VI of rat calpain is a homodimer in solution: Hydrodynamic, crystallization and preliminary Xâ€ray diffraction studies. Protein Science, 1996, 5, 535-537.	3.1	31
152	Crystallization and preliminary xâ€ray diffraction studies of human procathepsin L. Proteins: Structure, Function and Bioinformatics, 1996, 25, 398-400.	1.5	12
153	Redesigning the active site of Geotrichum candidum lipase. Protein Engineering, Design and Selection, 1995, 8, 835-842.	1.0	11
154	Bacillus thuringiensisCrylA(a) Insecticidal Toxin: Crystal Structure and Channel Formation. Journal of Molecular Biology, 1995, 254, 447-464.	2.0	516
155	Two conformational states of <i>Candida rugosa</i> lipase. Protein Science, 1994, 3, 82-91.	3.1	346
156	Preparation, Characterization and Crystallization of an Antibody Fab Fragment that Recognizes RNA. Journal of Molecular Biology, 1994, 243, 283-297.	2.0	62
157	Crystallization and Preliminary X-ray Diffraction Studies of the Lepidopteran-specific Insecticidal Crystal Protein CrylA(a). Journal of Molecular Biology, 1994, 243, 530-532.	2.0	13
158	A Structural Basis for the Chiral Preferences of Lipases. Journal of the American Chemical Society, 1994, 116, 3180-3186.	6.6	328
159	Crystal structure of the complex of human α-thrombin and nonhydrolyzable bifunctional inhibitors, hirutonin—2 and hirutonin—6. Proteins: Structure, Function and Bioinformatics, 1993, 17, 252-265.	1.5	38
160	Relationship between sequence conservation and threeâ€dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 1993, 2, 366-382.	3.1	506
161	Snapshots along the pathway. Nature, 1993, 363, 674-675.	13.7	1
162	Conformation of Complementarity Determining Region L1 Loop in Murine IgG λ Light Chain Extends the Repertoire of Canonical Forms. Journal of Molecular Biology, 1993, 229, 597-601.	2.0	36

#	Article	IF	CITATIONS
163	1·8 à Refined Structure of the Lipase from Geotrichum candidum. Journal of Molecular Biology, 1993, 230, 575-591.	2.0	154
164	Recognition of a carbohydrate antigenic determinant of <i>Salmonella</i> by an antibody. Biochemical Society Transactions, 1993, 21, 437-441.	1.6	34
165	Advances in Structural Understanding of Lipases. Biotechnology and Genetic Engineering Reviews, 1992, 10, 143-184.	2.4	47
166	The $\hat{I} \pm / \hat{I}^2$ hydrolase fold. Protein Engineering, Design and Selection, 1992, 5, 197-211.	1.0	1,887
167	Multiple crystal forms of lipases from Geotrichum candidum. Journal of Molecular Biology, 1991, 220, 541-543.	2.0	6
168	Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 1991, 351, 761-764.	13.7	552
169	Sindbis virus core protein crystals. Journal of Molecular Biology, 1989, 208, 79-82.	2.0	9
170	Structure and reactions of 4-(2,4,6-trimethyl)benzylidene-2-phenyloxazolin-5-one. Canadian Journal of Chemistry, 1986, 64, 2064-2067.	0.6	11
171	Prediction of 3-D Structure of the Cro Protein from Phage 434. Journal of Biomolecular Structure and Dynamics, 1986, 3, 1055-1066.	2.0	1
172	Computer modeling studies of the structure of a repressor. BioSystems, 1985, 18, 3-14.	0.9	5
173	Conformational features of acyclonucleosides: structure of acyclovir, an antiherpes agent. Canadian Journal of Chemistry, 1984, 62, 2646-2652.	0.6	52
174	Conformation of azaphosphorinane ring. Crystal structures of 2,2,6,6-tetramethyl-4,4-diphenyl-1,4-azaphosphorinanium perchlorate and 2,2,6,6-tetramethyl-4-oxo-4-phenyl-1,4-azaphosphorinan-1-oxyl (stable nitroxy radical). Canadian Journal of Chemistry, 1983, 61, 427-433.	0.6	4
175	Electrophilic cleavage of cyclopropanes. IV. The reaction of 2-nitrobenzenesulphenyl chloride with tetracyclo[3.2.0.02,7.04,6]heptane in methanol and acetic acid: the crystal structure of exo-3-(2â€2-nitrophenylthio)-exo-5-methoxytricyclo[2.2.1.02,6]heptane, C14H15NO3S. Canadian Journal of Chemistry, 1983, 61, 1176-1184.	0.6	9
176	Crystallographic data for complexes of the Cro repressor with DNA. Journal of Molecular Biology, 1983, 168, 903-906.	2.0	19
177	The crystal structure of benzenediazonium tetrafluoroborate, C6H5N2+•BF4â^'1. Canadian Journal of Chemistry, 1982, 60, 2852-2855.	0.6	45
178	Structure and conformation of 8-bromo-9betaD-xylofuranosyladenine in the solid state and in solution. Journal of the American Chemical Society, 1982, 104, 3957-3964.	6.6	10
179	Structure and conformation of the antiviral nucleoside 2'-fluoro-5-iodoarabinosylcytosine (FIAC). The gauche effect in nucleosides. Journal of the American Chemical Society, 1982, 104, 7626-7630.	6.6	24
180	Structure and conformation of the potent antiherpes agent 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine). Biochemical and Biophysical Research Communications, 1981, 103, 968-974.	1.0	18