
Guo-Ping Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 2010, 28, 882-894.	11.7	2,305
2	Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 2006, 40, 1233-1239.	11.3	629
3	FTIR and Synchronous Fluorescence Heterospectral Two-Dimensional Correlation Analyses on the Binding Characteristics of Copper onto Dissolved Organic Matter. Environmental Science & Technology, 2015, 49, 2052-2058.	10.0	389
4	Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation. Environmental Science & Technology, 2010, 44, 4355-4360.	10.0	378
5	Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 2014, 169, 403-408.	9.6	344
6	Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Research, 2013, 47, 607-614.	11.3	289
7	Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Research, 2013, 47, 5298-5306.	11.3	264
8	Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Research, 2012, 46, 1817-1824.	11.3	254
9	Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by <i>Bacillus megaterium</i> TF10 for Their Flocculation Capacity. Environmental Science & Technology, 2011, 45, 1152-1157.	10.0	248
10	A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 2016, 316, 11-18.	12.4	241
11	pH Dependence of Structure and Surface Properties of Microbial EPS. Environmental Science & Technology, 2012, 46, 737-744.	10.0	225
12	Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 2017, 111, 204-212.	11.3	219
13	Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science & Technology, 2016, 50, 3882-3889.	10.0	199
14	Physicochemical characteristics of microbial granules. Biotechnology Advances, 2009, 27, 1061-1070.	11.7	195
15	An MEC-MFC-Coupled System for Biohydrogen Production from Acetate. Environmental Science & Technology, 2008, 42, 8095-8100.	10.0	193
16	Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology, 2005, 67, 125-130.	3.6	185
17	Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology and Biotechnology, 2005, 69, 216-222.	3.6	180
18	Phosphorus Removal in an Enhanced Biological Phosphorus Removal Process: Roles of Extracellular Polymeric Substances. Environmental Science & Technology, 2013, 47, 11482-11489.	10.0	167

#	Article	IF	CITATIONS
19	Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation–emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research, 2009, 43, 1350-1358.	11.3	163
20	Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environmental Science & Technology, 2011, 45, 9256-9261.	10.0	163
21	Activating peroxydisulfate with Co3O4/NiCo2O4 double-shelled nanocages to selectively degrade bisphenol A – A nonradical oxidation process. Applied Catalysis B: Environmental, 2021, 282, 119585.	20.2	158
22	Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Research, 2009, 43, 5267-5275.	11.3	153
23	A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy, 2012, 98, 230-235.	10.1	153
24	Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge. Colloids and Surfaces B: Biointerfaces, 2008, 62, 83-90.	5.0	151
25	Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Research, 2008, 42, 3343-3352.	11.3	150
26	A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2010, 26, 338-343.	10.1	139
27	Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Research, 2010, 44, 5298-5305.	11.3	138
28	Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 2005, 40, 645-650.	3.7	137
29	Microbe-Assisted Sulfide Oxidation in the Anode of a Microbial Fuel Cell. Environmental Science & Technology, 2009, 43, 3372-3377.	10.0	137
30	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	3.1	131
31	Stability of sludge flocs under shear conditions: Roles of extracellular polymeric substances (EPS). Biotechnology and Bioengineering, 2006, 93, 1095-1102.	3.3	127
32	Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. Journal of Hazardous Materials, 2016, 318, 9-14.	12.4	125
33	Fractionating soluble microbial products in the activated sludge process. Water Research, 2010, 44, 2292-2302.	11.3	120
34	Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Applied Materials & Interfaces, 2014, 6, 8158-8164.	8.0	118
35	Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy and Environmental Science, 2011, 4, 1422.	30.8	116
36	Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Research, 2008, 42, 3173-3181.	11.3	115

#	Article	lF	CITATIONS
37	DLVO Approach to the Flocculability of a Photosynthetic H2-Producing Bacterium, Rhodopseudomonas acidophila. Environmental Science & Technology, 2007, 41, 4620-4625.	10.0	114
38	Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge. Chemosphere, 2013, 93, 1436-1441.	8.2	112
39	Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology, 2012, 93, 1769-1776.	3.6	107
40	Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nature Communications, 2013, 4, 2249.	12.8	107
41	Manipulating the hydrogen production from acetate in a microbial electrolysis cell–microbial fuel cell-coupled system. Journal of Power Sources, 2009, 191, 338-343.	7.8	105
42	Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Research, 2015, 86, 85-95.	11.3	103
43	In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling. Water Research, 2013, 47, 5794-5800.	11.3	102
44	A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36, 2773-2776.	7.1	101
45	Coagulation Kinetics of Humic Aggregates in Mono- and Di-Valent Electrolyte Solutions. Environmental Science & Technology, 2013, 47, 5042-5049.	10.0	100
46	Complete mineralization of perfluorooctanoic acid (PFOA) by \hat{I}^3 -irradiation in aqueous solution. Scientific Reports, 2014, 4, 7418.	3.3	96
47	Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Research, 2016, 106, 242-248.	11.3	96
48	Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica) Tj ETQq0 0 0 rg	BT_/Overlo	ock 10 Tf 50 3
49	A bio-photoelectrochemical cell with a MoS ₃ -modified silicon nanowire photocathode for hydrogen and electricity production. Energy and Environmental Science, 2014, 7, 3033-3039.	30.8	89
50	Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics, 2012, 14, 1978.	2.8	85
51	High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nature Protocols, 2016, 11, 377-386.	12.0	85
52	Degradation of Organic Pollutants in a Photoelectrocatalytic System Enhanced by a Microbial Fuel Cell. Environmental Science & Technology, 2010, 44, 5575-5580.	10.0	82
53	Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Scientific Reports, 2016, 6, 39098.	3.3	81
54	Electricity generation from mixed volatile fatty acids using microbial fuel cells. Applied Microbiology and Biotechnology, 2010, 87, 2365-2372.	3.6	80

#	Article	IF	CITATIONS
55	Lead Toxicity to the Performance, Viability, And Community Composition of Activated Sludge Microorganisms. Environmental Science & Technology, 2015, 49, 824-830.	10.0	80
56	Enhanced Photodegradation of Extracellular Antibiotic Resistance Genes by Dissolved Organic Matter Photosensitization. Environmental Science & Technology, 2019, 53, 10732-10740.	10.0	80
57	Tetracycline exposure shifted microbial communities and enriched antibiotic resistance genes in the aerobic granular sludge. Environment International, 2019, 130, 104902.	10.0	78
58	A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe. Scientific Reports, 2013, 3, 1315.	3.3	76
59	Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Research, 2009, 43, 1247-1256.	11.3	75
60	Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water Research, 2012, 46, 6210-6217.	11.3	73
61	Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Physical Chemistry Chemical Physics, 2012, 14, 9966.	2.8	73
62	Integration of a microbial fuel cell with activated sludge process for energyâ€saving wastewater treatment: Taking a sequencing batch reactor as an example. Biotechnology and Bioengineering, 2011, 108, 1260-1267.	3.3	72
63	Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell. Applied Energy, 2017, 204, 382-389.	10.1	71
64	Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Biosensors and Bioelectronics, 2010, 26, 470-476.	10.1	70
65	Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosensors and Bioelectronics, 2011, 26, 3987-3992.	10.1	69
66	A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protocols, 2014, 9, 112-119.	12.0	69
67	A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment. Scientific Reports, 2013, 3, 1864.	3.3	68
68	Different non-radical oxidation processes of persulfate and peroxymonosulfate activation by nitrogen-doped mesoporous carbon. Chinese Chemical Letters, 2020, 31, 2614-2618.	9.0	67
69	FTIR-spectral analysis of two photosynthetic H2-producing strains and their extracellular polymeric substances. Applied Microbiology and Biotechnology, 2006, 73, 204-210.	3.6	65
70	China's wastewater discharge standards in urbanization. Environmental Science and Pollution Research, 2012, 19, 1422-1431.	5.3	65
71	Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology, 2010, 101, 2960-2964.	9.6	63
72	A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell. Applied Energy, 2012, 98, 594-596.	10.1	63

#	Article	IF	CITATIONS
73	Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis. Water Research, 2011, 45, 674-680.	11.3	62
74	Quantifying the occurrence and transformation potential of extracellular polymeric substances (EPS)-associated antibiotic resistance genes in activated sludge. Journal of Hazardous Materials, 2021, 408, 124428.	12.4	62
75	Hydrogen production in a light-driven photoelectrochemical cell. Applied Energy, 2014, 113, 164-168.	10.1	61
76	A modeling approach to describe ZVI-based anaerobic system. Water Research, 2013, 47, 6007-6013.	11.3	60
77	Warming increases methylmercury production in an Arctic soil. Environmental Pollution, 2016, 214, 504-509.	7.5	60
78	Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. Water Research, 2016, 88, 703-710.	11.3	60
79	Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Water Research, 2019, 159, 145-152.	11.3	60
80	Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresource Technology, 2010, 101, 1722-1726.	9.6	59
81	Direct Electricity Recovery from <i>Canna indica</i> by an Air-Cathode Microbial Fuel Cell Inoculated with Rumen Microorganisms. Environmental Science & Technology, 2010, 44, 2715-2720.	10.0	59
82	Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors. Bioresource Technology, 2014, 171, 472-476.	9.6	58
83	Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water Research, 2012, 46, 4371-4378.	11.3	56
84	Species of phosphorus in the extracellular polymeric substances of EBPR sludge. Bioresource Technology, 2013, 142, 714-718.	9.6	56
85	A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by Gamma radiation. RSC Advances, 2012, 2, 494-500.	3.6	55
86	Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environmental Pollution, 2017, 220, 1359-1365.	7.5	53
87	An innovative miniature microbial fuel cell fabricated using photolithography. Biosensors and Bioelectronics, 2011, 26, 2841-2846.	10.1	52
88	Advances in the Characterization Methods of Biomass Pyrolysis Products. ACS Sustainable Chemistry and Engineering, 2019, 7, 12639-12655.	6.7	51
89	Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell. Science of the Total Environment, 2018, 639, 1512-1519.	8.0	50
90	Fractional characterization of a bio-oil derived from rice husk. Biomass and Bioenergy, 2011, 35, 671-678.	5.7	49

#	Article	IF	CITATIONS
91	Synthesis of Layered MnO2 Nanosheets for Enhanced Oxygen Reduction Reaction Catalytic Activity. Electrochimica Acta, 2014, 132, 239-243.	5.2	49
92	Redox state of microbial extracellular polymeric substances regulates reduction of selenite to elemental selenium accompanying with enhancing microbial detoxification in aquatic environments. Water Research, 2020, 172, 115538.	11.3	49
93	Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology, 2006, 72, 126-131.	3.6	48
94	Photomineralization of Effluent Organic Phosphorus to Orthophosphate under Simulated Light Illumination. Environmental Science & Technology, 2019, 53, 4997-5004.	10.0	48
95	Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Science of the Total Environment, 2019, 657, 1014-1022.	8.0	48
96	Filtration behaviors and biocake formation mechanism of mesh filters used in membrane bioreactors. Separation and Purification Technology, 2011, 81, 472-479.	7.9	47
97	Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Applied Microbiology and Biotechnology, 2011, 89, 201-208.	3.6	47
98	Heterotrophs grown on the soluble microbial products (SMP) released by autotrophs are responsible for the nitrogen loss in nitrifying granular sludge. Biotechnology and Bioengineering, 2011, 108, 2844-2852.	3.3	47
99	A pilot investigation into membrane bioreactor using mesh filter for treating low-strength municipal wastewater. Bioresource Technology, 2012, 122, 17-21.	9.6	47
100	Insights into the interactions between triclosan (TCS) and extracellular polymeric substance (EPS) of activated sludge. Journal of Environmental Management, 2019, 232, 219-225.	7.8	47
101	Quantifying the surface characteristics and flocculability of Ralstonia eutropha. Applied Microbiology and Biotechnology, 2008, 79, 187-194.	3.6	45
102	Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. Applied Microbiology and Biotechnology, 2009, 83, 1159-1169.	3.6	45
103	Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm, 2013, 15, 7895.	2.6	45
104	Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems. Water Research, 2015, 84, 171-180.	11.3	45
105	In situ formation of NiCoP@phosphate nanocages as an efficient bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2020, 337, 135799.	5.2	44
106	Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: Synergistic mechanism and kinetic analysis. Journal of Hazardous Materials, 2021, 402, 123846.	12.4	44
107	Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere, 2017, 168, 293-299.	8.2	43
108	Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. Bioresource Technology, 2018, 247, 471-476.	9.6	43

#	Article	IF	CITATIONS
109	Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Scientific Reports, 2013, 3, 2525.	3.3	42
110	Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network. Scientific Reports, 2014, 4, 3732.	3.3	42
111	Denitrification in an integrated bioelectro-photocatalytic system. Water Research, 2017, 109, 88-93.	11.3	42
112	Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis. Journal of Hazardous Materials, 2016, 302, 262-266.	12.4	41
113	Robust performance of a novel anaerobic biofilm membrane bioreactor with mesh filter and carbon fiber (ABMBR) for low to high strength wastewater treatment. Chemical Engineering Journal, 2017, 313, 56-64.	12.7	41
114	Microbial extracellular polymeric substances (EPS) acted as a potential reservoir in responding to high concentrations of sulfonamides shocks during biological wastewater treatment. Bioresource Technology, 2020, 313, 123654.	9.6	40
115	Tracking the activity of the Anammox-DAMO process using excitation–emission matrix (EEM) fluorescence spectroscopy. Water Research, 2017, 122, 624-632.	11.3	38
116	Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process. Applied Microbiology and Biotechnology, 2007, 74, 208-214.	3.6	37
117	Rapid and accurate determination of VFAs and ethanol in the effluent of an anaerobic H2-producing bioreactor using near-infrared spectroscopy. Water Research, 2009, 43, 1823-1830.	11.3	37
118	Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment. Bioresource Technology, 2012, 122, 22-26.	9.6	37
119	Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs. Biotechnology and Bioengineering, 2011, 108, 804-812.	3.3	35
120	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	3.3	35
121	Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic–Abiotic Hybrid Systems. Journal of the American Chemical Society, 2022, 144, 6434-6441.	13.7	35
122	In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment. Applied Microbiology and Biotechnology, 2016, 100, 6081-6089.	3.6	33
123	In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. Chemical Engineering Science, 2017, 171, 451-458.	3.8	33
124	Application of membrane bioreactor for sulfamethazine-contained wastewater treatment. Chemosphere, 2018, 193, 840-846.	8.2	33
125	Novel Online Monitoring and Alert System for Anaerobic Digestion Reactors. Environmental Science & Technology, 2011, 45, 9093-9100.	10.0	31
126	Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell. International Biodeterioration and Biodegradation, 2010, 64, 378-382.	3.9	30

#	Article	IF	CITATIONS
127	Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water. Environmental Science and Pollution Research, 2013, 20, 2220-2225.	5.3	30
128	Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System. Scientific Reports, 2013, 3, 1616.	3.3	30
129	Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization. Journal of Chromatography A, 2014, 1361, 162-168.	3.7	30
130	Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. Environmental Science and Pollution Research, 2016, 23, 8627-8633.	5.3	30
131	Quantitative determination of Al-2 quorum-sensing signal of bacteria using high performance liquid chromatography–tandem mass spectrometry. Journal of Environmental Sciences, 2017, 52, 204-209.	6.1	30
132	Impact of heavy metals on the formation and properties of solvable microbiological products released from activated sludge in biological wastewater treatment. Water Research, 2020, 179, 115895.	11.3	30
133	Stability of sludge flocs under shear conditions. Biochemical Engineering Journal, 2008, 38, 302-308.	3.6	29
134	Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets. Environmental Pollution, 2019, 255, 113327.	7.5	29
135	Uptake, accumulation and metabolization of 1-butyl-3-methylimidazolium bromide by ryegrass from water: Prospects for phytoremediation. Water Research, 2019, 156, 82-91.	11.3	29
136	Photoautotrophic cathodic oxygen reduction catalyzed by a green alga, <i>Chlamydomonas reinhardtii</i> . Biotechnology and Bioengineering, 2013, 110, 173-179.	3.3	28
137	Developing a solar photothermal method for peroxydisulfate activation for water purification: Taking degradation of sulfamethoxazole as an example. Chemical Engineering Journal, 2021, 403, 126324.	12.7	28
138	A rapid quantitative method for humic substances determination in natural waters. Analytica Chimica Acta, 2007, 592, 162-167.	5.4	27
139	Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation. Environmental Science and Pollution Research, 2014, 21, 9617-9625.	5.3	27
140	Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery. Applied Energy, 2020, 275, 115291.	10.1	27
141	Molecular insight into the variation of dissolved organic phosphorus in a wastewater treatment plant. Water Research, 2021, 203, 117529.	11.3	27
142	Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Journal of Hazardous Materials, 2022, 423, 127088.	12.4	27
143	Chemical-Equilibrium-Based Model for Describing the Strength of Sludge:  Taking Hydrogen-Producing Sludge as an Example. Environmental Science & Technology, 2006, 40, 1280-1285.	10.0	26
144	Fluorescence spectral characteristics of the supernatants from an anaerobic hydrogen-producing bioreactor. Applied Microbiology and Biotechnology, 2011, 89, 217-224.	3.6	26

#	Article	IF	CITATIONS
145	Concentration- and nutrient-dependent cellular responses of microalgae Chlorella pyrenoidosa to perfluorooctanoic acid. Water Research, 2020, 185, 116248.	11.3	26
146	Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method. Water Research, 2008, 42, 3464-3472.	11.3	25
147	Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution. Biochemical Engineering Journal, 2014, 85, 15-20.	3.6	25
148	Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants. Science of the Total Environment, 2019, 649, 1260-1268.	8.0	25
149	Haloarchaea, excellent candidates for removing pollutants from hypersaline wastewater. Trends in Biotechnology, 2022, 40, 226-239.	9.3	25
150	Extracellular polymeric substances (EPS) associated extracellular antibiotic resistance genes in activated sludge along the AAO process: Distribution and microbial secretors. Science of the Total Environment, 2022, 816, 151575.	8.0	25
151	Co-doping polymethyl methacrylate and copper tailings to improve the performances of sludge-derived particle electrode. Water Research, 2019, 165, 115016.	11.3	24
152	Dissolved organic matter dominating the photodegradation of free DNA bases in aquatic environments. Water Research, 2020, 179, 115885.	11.3	24
153	Unrecognized Contributions of Dissolved Organic Matter Inducing Photodamages to the Decay of Extracellular DNA in Waters. Environmental Science & Technology, 2020, 54, 1614-1622.	10.0	24
154	Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC). Biochemical Engineering Journal, 2013, 71, 57-61.	3.6	23
155	Application of a weak magnetic field to improve microbial fuel cell performance. Ecotoxicology, 2015, 24, 2175-2180.	2.4	23
156	Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment. Chemosphere, 2015, 140, 79-84.	8.2	23
157	Mixture toxicity and uptake of 1-butyl-3-methylimidazolium bromide and cadmium co-contaminants in water by perennial ryegrass (Lolium perenne L.). Journal of Hazardous Materials, 2020, 386, 121972.	12.4	23
158	Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by <i>Shewanella oneidensis</i> MR-1 at the molecular scale. Environmental Science: Nano, 2017, 4, 2395-2404.	4.3	22
159	Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale. Scientific Reports, 2014, 4, 7078.	3.3	21
160	Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids. Environmental Pollution, 2018, 243, 752-757.	7.5	21
161	A Novel Approach to Evaluate the Production Kinetics of Extracellular Polymeric Substances (EPS) by Activated Sludge Using Weighted Nonlinear Least-Squares Analysis. Environmental Science & Technology, 2009, 43, 3743-3750.	10.0	20
162	Evaluation of the stability of hydrogen production and microbial diversity by anaerobic sludge with chloroform treatment. Renewable Energy, 2012, 38, 253-257.	8.9	20

#	Article	IF	CITATIONS
163	Synergistic Effect of Permanganate and in Situ Synthesized Hydrated Manganese Oxide for Removing Antibiotic Resistance Genes from Wastewater Treatment Plant Effluent. Environmental Science & Technology, 2019, 53, 13374-13381.	10.0	20
164	Long-term impact of heavy metals on the performance of biological wastewater treatment processes during shock-adaptation-restoration phases. Journal of Hazardous Materials, 2019, 373, 152-159.	12.4	20
165	Chemical speciation of ciprofloxacin in aqueous solution regulates its phytotoxicity and uptake by rice (Oryza sativa L.). Science of the Total Environment, 2021, 771, 144787.	8.0	20
166	Hydrodynamics of an Electrochemical Membrane Bioreactor. Scientific Reports, 2015, 5, 10387.	3.3	19
167	Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution. Water Research, 2012, 46, 3490-3496.	11.3	18
168	Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant. Scientific Reports, 2016, 6, 26115.	3.3	18
169	Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine. Chemosphere, 2018, 193, 472-478.	8.2	18
170	Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem. Journal of Hazardous Materials, 2021, 420, 126672.	12.4	18
171	Characterization of Multiporous Structure and Oxygen Transfer Inside Aerobic Granules with the Percolation Model. Environmental Science & Technology, 2010, 44, 8535-8540.	10.0	17
172	Undiscovered Multiple Roles of Multivalent Cations in the Pollutant Removal from Actual Water by Persulfate Activated by Carbon Materials. ACS ES&T Engineering, 2021, 1, 1227-1235.	7.6	17
173	A novel pathway for the anaerobic biotransformation of microcystin-LR using enrichment cultures. Environmental Pollution, 2019, 247, 1064-1070.	7.5	16
174	Alkyl chain length affecting uptake of imidazolium based ionic liquids by ryegrass (Lolium perenne L.). Journal of Hazardous Materials, 2021, 401, 123376.	12.4	16
175	Model-evaluation of the erosion behavior of activated sludge under shear conditions using a chemical-equilibrium-based model. Chemical Engineering Journal, 2008, 140, 241-246.	12.7	15
176	A dead-end filtration method to rapidly and quantitatively evaluate the fouling resistance of nylon mesh for membrane bioreactors. Separation and Purification Technology, 2012, 89, 107-111.	7.9	15
177	Quantitative Simulation of the Granulation Process of Activated Sludge for Wastewater Treatment. Industrial & Engineering Chemistry Research, 2010, 49, 2864-2873.	3.7	14
178	Simultaneous carbon and nitrogen removals in membrane bioreactor with mesh filter: An experimental and modeling approach. Chemical Engineering Science, 2013, 95, 78-84.	3.8	14
179	Spectroscopic characterization of the complexes between Fe/Mn and natural organic matters by electron paramagnetic resonance and synchrotron-based techniques. Ecotoxicology, 2015, 24, 2207-2212.	2.4	14
180	An MFC-Based Online Monitoring and Alert System for Activated Sludge Process. Scientific Reports, 2014, 4, 6779.	3.3	14

#	Article	IF	CITATIONS
181	Fluorescence approach for investigating binding properties between metals and soluble microbial products from a biological wastewater treatment plant. Process Biochemistry, 2015, 50, 636-642.	3.7	14
182	Evaluating the effect of gradient applied voltages on antibiotic resistance genes proliferation and biogas production in anaerobic electrochemical membrane bioreactor. Journal of Hazardous Materials, 2021, 416, 125865.	12.4	14
183	Formation of soluble microbial products by activated sludge under anoxic conditions. Applied Microbiology and Biotechnology, 2010, 87, 373-382.	3.6	13
184	Photothermal Nanoconfinement Reactor: Boosting Chemical Reactivity with Locally High Temperature in a Confined Space. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
185	Quantification of the interactions between a cationic dye and humic substances in aqueous solutions. Journal of Colloid and Interface Science, 2009, 331, 15-20.	9.4	12
186	Effects of a transient external voltage application on the bioanode performance of microbial fuel cells. Electrochimica Acta, 2010, 55, 3048-3054.	5.2	12
187	Dynamic Modeling the Anaerobic Reactor Startup Process. Industrial & Engineering Chemistry Research, 2010, 49, 7193-7200.	3.7	12
188	Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation. Electrochimica Acta, 2015, 154, 294-299.	5.2	12
189	Synchronous reduction-oxidation of 2,4,6-tribromophenol using bifunctional AgPd@CDs in a three dimensional electrochemical reactor. Applied Catalysis B: Environmental, 2021, 297, 120467.	20.2	12
190	Selectively Tracking Nanoparticles in Aquatic Plant Using Core–Shell Nanoparticle-Enhanced Raman Spectroscopy Imaging. ACS Nano, 2021, 15, 19828-19837.	14.6	12
191	Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	11
192	Accurately quantifying the reductive capacity of microbial extracellular polymeric substance by mediated electrochemical oxidation method. Science of the Total Environment, 2019, 673, 541-545.	8.0	11
193	Degradation and detoxification of 1-butyl-3-methylimidazolium bromide by Î ³ -irradiation in aqueous solution. Chemical Engineering Journal, 2019, 364, 440-447.	12.7	11
194	Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions. Environmental Pollution, 2015, 207, 123-129.	7.5	10
195	Immobiling enzyme-like ligand in the ultrafiltration membrane to remove the micropollutant for the ultrafast water purification. Journal of Membrane Science, 2021, 636, 119566.	8.2	10
196	Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system. Scientific Reports, 2015, 5, 16281.	3.3	9
197	Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF. Frontiers of Environmental Science and Engineering, 2016, 10, 362-367.	6.0	9
198	Phosphorus-Accumulating Organism Assisted Phosphorization of Ni-Fe Nanocomposites for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 11456-11464.	6.7	9

#	Article	IF	CITATIONS
199	Nitrogen and phosphorous recycling from human urine by household electrochemical fixed bed in sparsely populated regions. Water Research, 2022, 218, 118467.	11.3	9
200	Experimental and numerical analysis of the hydrodynamic behaviors of aerobic granules. AICHE Journal, 2011, 57, 2909-2916.	3.6	8
201	Determination of main components in the extracellular polymeric substances extracted from activated sludge using a spectral probing method. Colloids and Surfaces B: Biointerfaces, 2012, 94, 151-156.	5.0	8
202	Coating ligand-mediated dynamic formation of natural organic matter (NOM) corona on engineered nanoparticles in natural environments. Environmental Science: Nano, 2021, 8, 1029-1041.	4.3	8
203	Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment. , 2009, 113, 275-303.		7
204	Microbial Fuel Cells in Power Generation and Extended Applications. Advances in Biochemical Engineering/Biotechnology, 2011, 128, 165-197.	1.1	7
205	Degradation and mineralization of 2-chlorophenol in a single-stage anaerobic fixed-bed bioreactor. Science China Technological Sciences, 2020, 63, 86-95.	4.0	6
206	In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. Journal of Power Sources, 2021, 491, 229616.	7.8	5
207	Photothermal Nanoconfinement Reactor: Boosting Chemical Reactivity with Locally High Temperature in a Confined Space. Angewandte Chemie, 2022, 134, .	2.0	4
208	Observing the Biologically Induced Phosphate Precipitation by Sludge Extracellular Polymeric Substances in Enhanced Biological Phosphorus Removal. ACS ES&T Engineering, 2022, 2, 1514-1522.	7.6	4
209	Near-infrared spectroscopy-based quantification of substrate and aqueous products in wastewater anaerobic fermentation processes. Science Bulletin, 2009, 54, 1918-1922.	9.0	3
210	Revealing Dissolved Organic Nitrogen Transformation and Microbial Evolution at Microscale in a Solid Carbon Source-Coordinated Simultaneous Partial Nitrification, Anammox, and Denitrification Bioreactor. ACS ES&T Engineering, 2022, 2, 2066-2075.	7.6	3
211	Surface characteristics of acidogenic sludge in H2-producing process. Journal of Water and Environment Technology, 2007, 5, 1-12.	0.7	2
212	A Novel Integrated Approach to the Enhanced Production of Polyhydrobutyrate with Mixed Culture in Activated Sludge. Industrial & Engineering Chemistry Research, 2010, 49, 7478-7483.	3.7	2
213	Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology. , 2013, , 249-261.		2
214	Titelbild: IR-ATR Chemical Sensors Based on Planar Silver Halide Waveguides Coated with an Ethylene/Propylene Copolymer for Detection of Multiple Organic Contaminants in Water (Angew.) Tj ETQq0 0 0	rg BT 0/Ove	rlo o k 10 Tf 50

Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale. , 2016, , 3-22.

0