Jeffrey W Pollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic Influences of Mammary Cancer on Monocytes in Mice. Cancers, 2022, 14, 833.	1.7	5
2	An acid trip activates protumoral macrophages to promote hepatocellular carcinoma malignancy. Journal of Clinical Investigation, 2022, 132, .	3.9	6
3	Monocyte Regulation in Homeostasis and Malignancy. Trends in Immunology, 2021, 42, 104-119.	2.9	64
4	The selective progesterone receptor modulator, telapristone acetate, is a mixed antagonist/agonist in the human and mouse endometrium and inhibits pregnancy in mice. F&S Science, 2021, 2, 59-70.	0.5	1
5	Macrophages inhibit and enhance endometriosis depending on their origin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
6	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	0.9	5
7	Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell, 2021, 184, 2454-2470.e26.	13.5	165
8	Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity, 2021, 54, 885-902.	6.6	68
9	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	0.9	6
10	Macrophage targeting in cancer. Annals of the New York Academy of Sciences, 2021, 1499, 18-41.	1.8	134
11	Myeloid Cells in Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038026.	2.9	29
12	Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods in Enzymology, 2020, 632, 113-131.	0.4	16
13	Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. Journal of Experimental Medicine, 2020, 217, .	4.2	84
14	Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. , 2020, 8, e001223.		104
15	Production and Characterization of Human Macrophages from Pluripotent Stem Cells. Journal of Visualized Experiments, 2020, , .	0.2	12
16	FACS isolation and analysis of human circulating and tumor neutrophils. Methods in Enzymology, 2020, 632, 229-257.	0.4	5
17	Generation of mouse bone marrow-derived macrophages using tumor coculture assays to mimic the tumor microenvironment. Methods in Enzymology, 2020, 632, 91-111.	0.4	4
18	Tumor-associated macrophages Current Biology 2020 30 R246-R248	1.8	136

ciated macrophages. Current Biology, 2020, 30, R246-R248.

#	Article	IF	CITATIONS
19	Lung Mammary Metastases but Not Primary Tumors Induce Accumulation of Atypical Large Platelets and Their Chemokine Expression. Cell Reports, 2019, 29, 1747-1755.e4.	2.9	11
20	Mammary Tumor Cells with High Metastatic Potential Are Hypersensitive to Macrophage-Derived HGF. Cancer Immunology Research, 2019, 7, 2052-2064.	1.6	15
21	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie, 2019, 131, 17050-17054.	1.6	13
22	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie - International Edition, 2019, 58, 16894-16898.	7.2	41
23	Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunology, Immunotherapy, 2019, 68, 687-697.	2.0	168
24	Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nature Neuroscience, 2019, 22, 1046-1052.	7.1	215
25	Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell, 2019, 35, 588-602.e10.	7.7	636
26	AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3604-3613.	3.3	96
27	Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nature Communications, 2019, 10, 881.	5.8	51
28	Real Time Detection of In Vitro Tumor Cell Apoptosis Induced by CD8 ⁺ T Cells to Study Immune Suppressive Functions of Tumor-infiltrating Myeloid Cells. Journal of Visualized Experiments, 2019, , .	0.2	7
29	Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 2019, 21, 190-202.	4.6	384
30	Dampening the fire to prevent surgery- and chemotherapy-induced metastasis. Journal of Clinical Investigation, 2019, 129, 2663-2665.	3.9	1
31	A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell Reports, 2018, 23, 1239-1248.	2.9	188
32	CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nature Communications, 2018, 9, 5279.	5.8	22
33	Targeting macrophages: therapeutic approaches in cancer. Nature Reviews Drug Discovery, 2018, 17, 887-904.	21.5	1,246
34	Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Research, 2018, 78, 5492-5503.	0.4	313
35	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
36	A human iPSC line capable of differentiating into functional macrophages expressing ZsGreen: a tool for the study and <i>in vivo</i> tracking of therapeutic cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170219.	1.8	35

#	Article	IF	CITATIONS
37	Optical Windows for Imaging the Metastatic Tumour Microenvironment in vivo. Trends in Biotechnology, 2017, 35, 5-8.	4.9	26
38	CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Research, 2017, 19, 4.	2.2	61
39	Repolarizing macrophages improves breast cancer therapy. Cell Research, 2017, 27, 963-964.	5.7	40
40	What DKKtates where to metastasize. Nature Cell Biology, 2017, 19, 1146-1148.	4.6	1
41	The Yolk Sac Feeds Pancreatic Tumors. Immunity, 2017, 47, 217-218.	6.6	5
42	Xenografted tissue models for the study of human endometrial biology. Differentiation, 2017, 98, 62-69.	1.0	8
43	Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer. Frontiers in Immunology, 2017, 8, 2004.	2.2	122
44	The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 2016, 30, 18-25.	7.7	194
45	Defining Metastatic Cell Latency. New England Journal of Medicine, 2016, 375, 280-282.	13.9	15
46	Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nature Communications, 2016, 7, 13096.	5.8	190
47	Inhibiting macrophage PI3KÎ ³ to enhance immunotherapy. Cell Research, 2016, 26, 1267-1268.	5.7	21
48	Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. Journal of Visualized Experiments, 2016, , .	0.2	22
49	Isolation of Mouse and Human Tumor-Associated Macrophages. Advances in Experimental Medicine and Biology, 2016, 899, 211-229.	0.8	52
50	Cancer immunosurveillance: role of patrolling monocytes. Cell Research, 2016, 26, 3-4.	5.7	34
51	Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC–ERK1/2–mTOR signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1382-91.	3.3	44
52	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Experimental Medicine, 2015, 212, 1043-1059.	4.2	520
53	<i>In vivo</i> subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital, 2015, 4, 1-11.	2.0	54
54	Immune cell promotion of metastasis. Nature Reviews Immunology, 2015, 15, 73-86.	10.6	967

#	Article	IF	CITATIONS
55	Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015, 75, 3479-3491.	0.4	375
56	FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. Journal of Experimental Medicine, 2015, 212, 1433-1448.	4.2	186
57	Bacteria, inflammation and cancer. Nature Reviews Immunology, 2015, 15, 528-528.	10.6	8
58	Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage–Derived VEGFA. Cancer Discovery, 2015, 5, 932-943.	7.7	474
59	Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacological Research, 2015, 100, 266-270.	3.1	49
60	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Cell Biology, 2015, 209, 2096OIA117.	2.3	1
61	Myeloid WNT7b Mediates the Angiogenic Switch and Metastasis in Breast Cancer. Cancer Research, 2014, 74, 2962-2973.	0.4	162
62	Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 2014, 41, 49-61.	6.6	3,060
63	The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Molecular Oncology, 2013, 7, 41-54.	2.1	49
64	Macrophage biology in development, homeostasis and disease. Nature, 2013, 496, 445-455.	13.7	3,541
65	KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1334-43.	3.3	77
66	GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 2012, 36, 1031-1046.	6.6	365
67	A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 2012, 336, 86-90.	6.0	2,084
68	Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood, 2012, 119, 3164-3175.	0.6	298
69	Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Research, 2012, 14, R23.	2.2	92
70	Leukocytes in Mammary Development and Cancer. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003285-a003285.	2.3	162
71	CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011, 475, 222-225.	13.7	2,286
72	VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nature Cell Biology, 2011, 13, 1202-1213.	4.6	272

#	Article	IF	CITATIONS
73	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	13.7	244
74	Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nature Protocols, 2011, 6, 1500-1520.	5.5	119
75	Gene Expression Analysis of Macrophages That Facilitate Tumor Invasion Supports a Role for Wnt-Signaling in Mediating Their Activity in Primary Mammary Tumors. Journal of Immunology, 2010, 184, 702-712.	0.4	208
76	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development (Cambridge), 2010, 137, 3899-3910.	1.2	127
77	FcÎ ³ Receptor Cross-linking Stimulates Cell Proliferation of Macrophages via the ERK Pathway. Journal of Biological Chemistry, 2010, 285, 4232-4242.	1.6	40
78	Genomic Profiling of MicroRNAs and Messenger RNAs Reveals Hormonal Regulation in MicroRNA Expression in Human Endometrium1. Biology of Reproduction, 2010, 82, 791-801.	1.2	259
79	Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4194-4199.	3.3	352
80	Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 2010, 141, 39-51.	13.5	4,106
81	A Novel Mouse Model of Inflammatory Bowel Disease Links Mammalian Target of Rapamycin-Dependent Hyperproliferation of Colonic Epithelium to Inflammation-Associated Tumorigenesis. American Journal of Pathology, 2010, 176, 952-967.	1.9	202
82	A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth. PLoS ONE, 2009, 4, e6562.	1.1	553
83	Lithium chloride treatment induces epithelial cell proliferation in xenografted human endometrium. Human Reproduction, 2009, 24, 1960-1967.	0.4	29
84	The EGF/CSF-1 Paracrine Invasion Loop Can Be Triggered by Heregulin \hat{I}^21 and CXCL12. Cancer Research, 2009, 69, 3221-3227.	0.4	120
85	Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009, 9, 239-252.	12.8	3,157
86	Trophic macrophages in development and disease. Nature Reviews Immunology, 2009, 9, 259-270.	10.6	1,028
87	High-Density Gene Expression Analysis of Tumor-Associated Macrophages from Mouse Mammary Tumors. American Journal of Pathology, 2009, 174, 1048-1064.	1.9	194
88	Macrophages: Modulators of Breast Cancer Progression. Novartis Foundation Symposium, 2008, , 158-172.	1.2	86
89	Uterine DCs are essential for pregnancy. Journal of Clinical Investigation, 2008, 118, 3832-5.	3.9	30
90	Macrophages define the invasive microenvironment in breast cancer. Journal of Leukocyte Biology, 2008, 84, 623-630.	1.5	362

#	Article	IF	CITATIONS
91	Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. Reproductive Medicine and Assisted Reproductive Techniques Series, 2008, , 99-122.	0.1	3
92	Tumor-Associated Macrophages Press the Angiogenic Switch in Breast Cancer: Figure 1 Cancer Research, 2007, 67, 5064-5066.	0.4	402
93	Assessment of the proliferative status of epithelial cell types in the endometrium of young and menopausal transition women. Human Reproduction, 2007, 22, 1778-1788.	0.4	24
94	Estradiol-17β regulates mouse uterine epithelial cell proliferation through insulin-like growth factor 1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15847-15851.	3.3	118
95	Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 2007, 1, 288-302.	2.1	139
96	Direct Visualization of Macrophage-Assisted Tumor Cell Intravasation in Mammary Tumors. Cancer Research, 2007, 67, 2649-2656.	0.4	940
97	Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer Research, 2006, 66, 11238-11246.	0.4	909
98	Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell, 2006, 124, 263-266.	13.5	2,377
99	Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 2006, 66, 605-612.	0.4	1,922
100	Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Developmental Dynamics, 2006, 235, 3222-3229.	0.8	246
101	Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis, 2006, 44, 328-335.	0.8	105
102	Microarray Analysis of Uterine Epithelial Gene Expression during the Implantation Window in the Mouse. Endocrinology, 2006, 147, 4904-4916.	1.4	57
103	Progesterone blocks estrogen-induced DNA synthesis through the inhibition of replication licensing. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14021-14026.	3.3	55
104	Progesterone Inhibits the Estrogen-Induced Phosphoinositide 3-Kinase→AKT→GSK-3β→Cyclin D1→pRB Pathw to Block Uterine Epithelial Cell Proliferation. Molecular Endocrinology, 2005, 19, 1978-1990.	^{/ay} 3.7	100
105	A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors. Cancer Research, 2004, 64, 7022-7029.	0.4	1,019
106	Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 2004, 4, 71-78.	12.8	2,971
107	Macrophages: modulators of breast cancer progression. Novartis Foundation Symposium, 2004, 256, 158-68; discussion 168-72, 259-69.	1.2	58
108	Progression to Malignancy in the Polyoma Middle T Oncoprotein Mouse Breast Cancer Model Provides a Reliable Model for Human Diseases. American Journal of Pathology, 2003, 163, 2113-2126.	1.9	912

#	Article	IF	CITATIONS
109	Progesterone Regulation of the Mammalian Ortholog of Methylcitrate Dehydratase (Immune Response) Tj ETQq1 Molecular Endocrinology, 2003, 17, 2340-2354.	1 0.7843 3.7	14 rgBT /C 42
110	A macrophage colony-stimulating factor receptor–green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood, 2003, 101, 1155-1163.	0.6	605
111	The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 2002, 7, 147-162.	1.0	246
112	GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Research, 2002, 62, 7166-9.	0.4	94
113	Rescue of the colony-stimulating factor 1 (CSF-1)–nullizygous mouse (Csf1op/Csf1op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood, 2001, 98, 74-84.	0.6	201
114	Aberrant Macrophage and Neutrophil Population Dynamics and Impaired Th1 Response to Listeria monocytogenesin Colony-Stimulating Factor 1-Deficient Mice. Infection and Immunity, 2001, 69, 1795-1807.	1.0	71
115	Regulation of meiotic recombination and prophase I progression in mammals. BioEssays, 2001, 23, 996-1009.	1.2	105
116	Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy. Journal of Experimental Medicine, 2001, 193, 727-740.	4.2	1,454
117	Eotaxin Is Required for Eosinophil Homing into the Stroma of the Pubertal and Cycling Uterus. Endocrinology, 2001, 142, 4515-4521.	1.4	96
118	The trophoblast is a component of the innate immune system during pregnancy. Nature Medicine, 2000, 6, 589-593.	15.2	200
119	Editorial: Genetic Regulation of Estrogen Responsiveness. Endocrinology, 1999, 140, 553-555.	1.4	5
120	Macrophages: important accessory cells for reproductive function. Journal of Leukocyte Biology, 1999, 66, 765-772.	1.5	128
121	Progesterone Inhibits Estrogen-Induced Cyclin D1 and cdk4 Nuclear Translocation, Cyclin E- and Cyclin A-cdk2 Kinase Activation, and Cell Proliferation in Uterine Epithelial Cells in Mice. Molecular and Cellular Biology, 1999, 19, 2251-2264.	1.1	156
122	Complexity in Uterine Macrophage Responses to Cytokines in Mice1. Biology of Reproduction, 1998, 58, 1469-1475.	1.2	61
123	Normal Sexual Function in Male Mice Lacking a Functional Type I Interleukin-1 (IL-1) Receptor. Endocrinology, 1998, 139, 815-818.	1.4	28
124	Absence of Colony Stimulating Factor-1 in Osteopetrotic (csfmop/csfmop) Mice Disrupts Estrous Cycles and Ovulation1. Biology of Reproduction, 1997, 56, 110-118.	1.2	127
125	Effect of the Colony-Stimulating Factor-1 Null Mutation, Osteopetrotic (csfmoP), on the Distribution of Macrophages in the Male Mouse Reproductive Tract1. Biology of Reproduction, 1997, 56, 1290-1300.	1.2	55
126	Role of colony-stimulating factor-1 in reproduction and development. Molecular Reproduction and Development, 1997, 46, 54-61.	1.0	114

#	Article	IF	CITATIONS
127	Role of colony-stimulating factor-1 in reproduction and development. , 1997, 46, 54.		2
128	Absence of Colony-Stimulating Factor-1 in Osteopetrotic (csfmoP/csfmOP) Mice Results in Male Fertility Defects1. Biology of Reproduction, 1996, 55, 310-317.	1.2	132
129	Colony stimulating factor-1 (CSF-1) in pregnancy. Reproductive Medicine Review, 1992, 1, 83-97.	0.3	26
130	Role of colony stimulating factor-1 (CSF-1) and other lympho-hematopoietic growth factors in mouse pre-implantation development. BioEssays, 1991, 13, 535-540.	1.2	113
131	Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature, 1987, 330, 484-486.	13.7	514
132	The In Vivo Isotopic Labeling of Proteins for Polyacrylamide Gel Electrophoresis. , 1984, 1, 75-80.		2
133	Eotaxin Is Required for Eosinophil Homing into the Stroma of the Pubertal and Cycling Uterus. , 0, .		21
134	Colony-Stimulating Factor-1 Plays a Major Role in the Development of Reproductive Function in Male Mice. , 0, .		18