Christian J Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373021/publications.pdf

Version: 2024-02-01

23544 34964 11,459 101 58 98 citations h-index g-index papers 117 117 117 10933 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase–Protein Kinase B–Glycogen Synthase Kinase 3β Signaling. Neuroscience, 2022, , .	1.1	7
2	Microglial transcription profiles in mouse and human are driven by APOE4 and sex. IScience, 2021, 24, 103238.	1.9	9
3	Second to fourth digit ratio (2D:4D) is associated with dementia in women. Early Human Development, 2020, 149, 105152.	0.8	9
4	Aging Reduces Estradiol Protection Against Neural but Not Metabolic Effects of Obesity in Female 3xTg-AD Mice. Frontiers in Aging Neuroscience, 2020, 12, 113.	1.7	15
5	Dementia risk in women higher in sameâ€sex than oppositeâ€sex twins. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12049.	1.2	8
6	Staining and Quantification of β-Amyloid Pathology in Transgenic Mouse Models of Alzheimer's Disease. Methods in Molecular Biology, 2020, 2144, 211-221.	0.4	5
7	APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. Acta Neuropathologica Communications, 2019, 7, 82.	2.4	64
8	P1 \hat{a} \in 021: TRANSCRIPTOMIC PROFILING OF MICROGLIA FROM AN ALZHEIMER'S DISEASE MOUSE MODEL AND FROM HUMAN INDUCED PLURIPOTENT STEM CELLS REVEALS EFFECTS OF THE APOE4 GENOTYPE. Alzheimer's and Dementia, 2019, 15, .	0.4	0
9	<i>APOE</i> genotype affects metabolic and Alzheimerâ€related outcomes induced by Western diet in female EFAD mice. FASEB Journal, 2019, 33, 4054-4066.	0.2	22
10	Effects of aging, high-fat diet, and testosterone treatment on neural and metabolic outcomes in male brown Norway rats. Neurobiology of Aging, 2019, 73, 145-160.	1.5	15
11	TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. Journal of Neuroinflammation, 2018, 15, 306.	3.1	40
12	Humanin Prevents Age-Related Cognitive Decline in Mice and is Associated with Improved Cognitive Age in Humans. Scientific Reports, 2018, 8, 14212.	1.6	74
13	TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neuroscience Letters, 2018, 683, 7-12.	1.0	28
14	Sex and the development of Alzheimer's disease. Journal of Neuroscience Research, 2017, 95, 671-680.	1.3	280
15	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
16	Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice. PLoS ONE, 2017, 12, e0178490.	1.1	26
17	Obesity Accelerates Alzheimer-Related Pathology in <i>APOE4</i> but not <i>APOE3</i> Mice. ENeuro, 2017, 4, ENEURO.0077-17.2017.	0.9	70
18	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81

#	Article	IF	Citations
19	Obesity and sex interact in the regulation of Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2016, 67, 102-118.	2.9	65
20	The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiology of Aging, 2016, 37, 47-57.	1.5	70
21	Impact of Continuous Versus Discontinuous Progesterone on Estradiol Regulation of Neuron Viability and Sprouting After Entorhinal Cortex Lesion in Female Rats. Endocrinology, 2015, 156, 1091-1099.	1.4	3
22	Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 130.	1.7	81
23	The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of Aging, 2015, 36, 2282-2295.	1.5	80
24	P3-406: THE ROLE OF STEROID BIOSYNTHESIS IN THE PROTECTIVE ACTIONS OF LIGANDS FOR THE TRANSLOCATOR PROTEIN (TSPO). , 2014, 10, P779-P779.		0
25	Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function. Journal of Neuroinflammation, 2014, $11,162.$	3.1	67
26	Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons. Molecular and Cellular Endocrinology, 2014, 384, 52-60.	1.6	15
27	Alzheimer's Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Current Diabetes Reports, 2014, 14, 476.	1.7	137
28	Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats. Endocrinology, 2014, 155, 1398-1406.	1.4	24
29	Gender, sex steroid hormones, and Alzheimer's disease. Hormones and Behavior, 2013, 63, 301-307.	1.0	204
30	Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiology of Aging, 2013, 34, 1080-1089.	1.5	105
31	Ligand for Translocator Protein Reverses Pathology in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 8891-8897.	1.7	125
32	Sex-Specific Effects of High Fat Diet on Indices of Metabolic Syndrome in 3xTg-AD Mice: Implications for Alzheimer's Disease. PLoS ONE, 2013, 8, e78554.	1.1	99
33	$17\hat{l}^2$ -Estradiol and Progesterone Regulate Expression of \hat{l}^2 -Amyloid Clearance Factors in Primary Neuron Cultures and Female Rat Brain. Endocrinology, 2012, 153, 5467-5479.	1.4	58
34	Continuous versus Cyclic Progesterone Exposure Differentially Regulates Hippocampal Gene Expression and Functional Profiles. PLoS ONE, 2012, 7, e31267.	1.1	49
35	Sex hormones aging and Alzheimer s disease. Frontiers in Bioscience - Elite, 2012, E4, 976-997.	0.9	84
36	Deconvolution of the confounding variations for reverse transcription quantitative real-time polymerase chain reaction by separate analysis of biological replicate data. Analytical Biochemistry, 2012, 427, 21-25.	1.1	4

#	Article	IF	CITATIONS
37	Caspase activation contributes to astrogliosis. Brain Research, 2012, 1450, 102-115.	1.1	38
38	Evaluation of the effects of testosterone and luteinizing hormone on regulation of \hat{l}^2 -amyloid in male 3xTg-AD mice. Brain Research, 2012, 1466, 137-145.	1,1	37
39	Sex hormones, aging, and Alzheimer's disease. Frontiers in Bioscience - Elite, 2012, 4, 976-97.	0.9	86
40	Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer's disease. Neurobiology of Aging, 2011, 32, 604-613.	1.5	223
41	Testosterone regulation of Alzheimer-like neuropathology in male 3xTg-AD mice involves both estrogen and androgen pathways. Brain Research, 2010, 1359, 281-290.	1.1	98
42	Sex differences in \hat{l}^2 -amyloid accumulation in 3xTg-AD mice: Role of neonatal sex steroid hormone exposure. Brain Research, 2010, 1366, 233-245.	1.1	207
43	Progesterone inhibits estrogenâ€mediated neuroprotection against excitotoxicity by downâ€regulating estrogen receptorâ€Î². Journal of Neurochemistry, 2010, 115, 1277-1287.	2.1	67
44	Androgens Selectively Protect Against Apoptosis in Hippocampal Neurones. Journal of Neuroendocrinology, 2010, 22, 1013-1022.	1.2	59
45	Continuous and Cyclic Progesterone Differentially Interact with Estradiol in the Regulation of Alzheimer-Like Pathology in Female 3×Transgenic-Alzheimer's Disease Mice. Endocrinology, 2010, 151, 2713-2722.	1.4	84
46	Testosterone regulates Alzheimer's disease pathogenesis., 2009,, 242-250.		1
47	Protective actions of sex steroid hormones in Alzheimer's disease. Frontiers in Neuroendocrinology, 2009, 30, 239-258.	2.5	424
48	Protective actions of sex steroid hormones in Alzheimer's disease. Frontiers in Neuroendocrinology, 2009, 30, 239-258. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12.	2.5	424 37
	2009, 30, 239-258. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009,		
48	2009, 30, 239-258. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12. Progesterone Attenuates Oestrogen Neuroprotection Via Downregulation of Oestrogen Receptor	1.1	37
48	Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12. Progesterone Attenuates Oestrogen Neuroprotection Via Downregulation of Oestrogen Receptor Expression in Cultured Neurones. Journal of Neuroendocrinology, 2009, 21, 77-81. Age-related changes in serum and brain levels of androgens in male Brown Norway rats. NeuroReport,	1.1	37
48 49 50	Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12. Progesterone Attenuates Oestrogen Neuroprotection Via Downregulation of Oestrogen Receptor Expression in Cultured Neurones. Journal of Neuroendocrinology, 2009, 21, 77-81. Age-related changes in serum and brain levels of androgens in male Brown Norway rats. NeuroReport, 2009, 20, 1534-1537. Androgens regulate neprilysin expression: role in reducing βâ€amyloid levels. Journal of	1.1 1.2 0.6	37 61 34
48 49 50	Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12. Progesterone Attenuates Oestrogen Neuroprotection Via Downregulation of Oestrogen Receptor Expression in Cultured Neurones. Journal of Neuroendocrinology, 2009, 21, 77-81. Age-related changes in serum and brain levels of androgens in male Brown Norway rats. NeuroReport, 2009, 20, 1534-1537. Androgens regulate neprilysin expression: role in reducing βâ€emyloid levels. Journal of Neurochemistry, 2008, 105, 2477-2488. Progesterone receptors: Form and function in brain. Frontiers in Neuroendocrinology, 2008, 29,	1.1 1.2 0.6	37 61 34 74

#	Article	IF	Citations
55	Androgen cell signaling pathways involved in neuroprotective actions. Hormones and Behavior, 2008, 53, 693-705.	1.0	117
56	Selective Estrogen Receptor Modulators Differentially Regulate Alzheimer-Like Changes in Female 3xTg-AD Mice. Endocrinology, 2008, 149, 2607-2611.	1.4	90
57	Estrogen Regulates Bcl-w and Bim Expression: Role in Protection against Â-Amyloid Peptide-Induced Neuronal Death. Journal of Neuroscience, 2007, 27, 1422-1433.	1.7	113
58	Flutamide and Cyproterone Acetate Exert Agonist Effects: Induction of Androgen Receptor-Dependent Neuroprotection. Endocrinology, 2007, 148, 2936-2943.	1.4	55
59	Progesterone and Estrogen Regulate Alzheimer-Like Neuropathology in Female 3xTg-AD Mice. Journal of Neuroscience, 2007, 27, 13357-13365.	1.7	295
60	Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cellular Signalling, 2007, 19, 114-128.	1.7	136
61	Conventional protein kinase C isoforms mediate neuroprotection induced by phorbol ester and estrogen. Journal of Neurochemistry, 2006, 96, 204-217.	2.1	27
62	Androgens, Aging, and Alzheimer's Disease. Endocrine, 2006, 29, 233-242.	2.2	59
63	Progestins inhibit the neuroprotective effects of estrogen in rat hippocampus. Brain Research, 2006, 1099, 206-210.	1.1	63
64	Androgens Regulate the Development of Neuropathology in a Triple Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2006, 26, 13384-13389.	1.7	142
65	Androgens activate mitogen-activated protein kinase signaling: Role in neuroprotection. Journal of Neurochemistry, 2005, 94, 1639-1651.	2.1	158
66	Neuroprotective properties of selective estrogen receptor agonists in cultured neurons. Brain Research, 2005, 1045, 217-223.	1.1	57
67	Â-Amyloid-Induced Neuronal Apoptosis Involves c-Jun N-Terminal Kinase-Dependent Downregulation of Bcl-w. Journal of Neuroscience, 2005, 25, 1149-1158.	1.7	209
68	The synthetic estrogen 4-estren- $3\hat{l}_{+}$, $17\hat{l}_{-}$ diol (estren) induces estrogen-like neuroprotection. Neurobiology of Disease, 2005, 19, 331-339.	2.1	16
69	Age-Related Testosterone Depletion and the Development of Alzheimer Disease. JAMA - Journal of the American Medical Association, 2004, 292, 1431-1432.	3.8	185
70	Androgens modulate Î ² -amyloid levels in male rat brain. Journal of Neurochemistry, 2004, 87, 1052-1055.	2.1	123
71	Exercise increases the vulnerability of rat hippocampal neurons to kainate lesion. Brain Research, 2003, 971, 239-244.	1.1	58
72	Estrogen activates protein kinase C in neurons: role in neuroprotection. Journal of Neurochemistry, 2003, 84, 1340-1348.	2.1	114

#	Article	IF	CITATIONS
73	Androgens modulate neuronal vulnerability to kainate lesion. Neuroscience, 2003, 122, 573-578.	1.1	101
74	The Influence of the Carboxyl Terminus of the Alzheimer A \hat{l}^2 Peptide on its Conformation, Aggregation, and Neurotoxic Properties. NeuroMolecular Medicine, 2002, 1, 81-94.	1.8	19
75	Estrogen regulates bcl-x expression in rat hippocampus. NeuroReport, 2001, 12, 2797-2800.	0.6	41
76	Estrogen Modulates Neuronal Bcl-xl Expression and \hat{l}^2 -Amyloid-Induced Apoptosis. Journal of Neurochemistry, 2001, 72, 1552-1563.	2.1	353
77	Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 2001, 14, 1992-2002.	1.2	271
78	Testosterone attenuates \hat{l}^2 -amyloid toxicity in cultured hippocampal neurons. Brain Research, 2001, 919, 160-165.	1.1	194
79	Apoptosis in Alzheimer's Disease. Advances in Behavioral Biology, 1998, , 45-51.	0.2	2
80	All-D-Enantiomers of \hat{l}^2 -Amyloid Exhibit Similar Biological Properties to All-L- \hat{l}^2 -Amyloids. Journal of Biological Chemistry, 1997, 272, 7431-7436.	1.6	82
81	Thrombin Induces Apoptosis in Cultured Neurons and Astrocytes via a Pathway Requiring Tyrosine Kinase and RhoA Activities. Journal of Neuroscience, 1997, 17, 5316-5326.	1.7	289
82	\hat{l}^2 -Amyloid Neurotoxicity In Vitro: Evidence of Oxidative Stress but Not Protection by Antioxidants. Journal of Neurochemistry, 1997, 69, 1601-1611.	2.1	117
83	β-Amyloid Increases Enzyme Activity and Protein Levels of Glutamine Synthetase in Cultured Astrocytes. Experimental Neurology, 1996, 139, 167-171.	2.0	17
84	\hat{l}^2 -amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiology of Aging, 1996, 17, 921-933.	1.5	297
85	Author's response to commentaries. Neurobiology of Aging, 1996, 17, 945-947.	1.5	3
86	Alzheimerâ€associated presenilinâ€2 confers increased sensitivity to poptosis in PC12 cells. FEBS Letters, 1996, 397, 50-54.	1.3	127
87	Thrombin Attenuates Neuronal Cell Death and Modulates Astrocyte Reactivity Induced by βâ€Amyloid In Vitro. Journal of Neurochemistry, 1996, 66, 1374-1382.	2.1	78
88	Attenuation of \hat{I}^2 \hat{I}	2.1	39
89	Calretinin-immunoreactive neurons are resistant to \hat{l}^2 -amyloid toxicity in vitro. Brain Research, 1995, 671, 293-298.	1.1	53
90	Amino-terminal Deletions Enhance Aggregation of \hat{l}^2 -Amyloid Peptides in Vitro. Journal of Biological Chemistry, 1995, 270, 23895-23898.	1.6	276

#	ŧ	Article	IF	CITATIONS
9)1	Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Experimental Neurology, 1995, 132, 172-179.	2.0	162
9	02	Structureâ€Activity Analyses of βâ€Amyloid Peptides: Contributions of the β25–35 Region to Aggregation and Neurotoxicity. Journal of Neurochemistry, 1995, 64, 253-265.	2.1	641
9	93	Differential Induction of Immediate Early Gene Proteins in Cultured Neurons by βâ€Amyloid (Aβ): Association of câ€Jun with Aβâ€Induced Apoptosis. Journal of Neurochemistry, 1995, 65, 1487-1498.	2.1	130
9	94	Rational pattern design for in vitro cellular networks using surface photochemistry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 607-616.	0.9	84
9)5	Ultrastructural analysis of \hat{l}^2 -amyloid-induced apoptosis in cultured hippocampal neurons. Brain Research, 1994, 661, 147-156.	1.1	140
9	96	Rapid Communication: Ca ²⁺ Channel Blockers Attenuate βâ€Amyloid Peptide Toxicity to Cortical Neurons in Culture. Journal of Neurochemistry, 1994, 62, 372-375.	2.1	195
9	7	β-Amyloid peptides induce degeneration of cultured rat microglia. Brain Research, 1993, 624, 121-125.	1.1	81
9	98	Î ² -Amyloid induces neuritic dystrophy in vitro. NeuroReport, 1992, 3, 769-772.	0.6	132
9	19	Î ² -Amyloid neurotoxicity: A discussion of in vitro findings. Neurobiology of Aging, 1992, 13, 587-590.	1.5	112
1	.00	In vitro aging of ß-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research, 1991, 563, 311-314.	1.1	855
1	.01	Aggregation-related toxicity of synthetic \hat{l}^2 -amyloid protein in hippocampal cultures. European Journal of Pharmacology, 1991, 207, 367-368.	2.7	279