Christian J Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373021/publications.pdf Version: 2024-02-01

101	11 459	23544 58	34964 98
papers	citations	h-index	g-index
	_		
117	117	117	10933
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ln vitro aging of ß-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research, 1991, 563, 311-314.	1.1	855
2	Structureâ€Activity Analyses of βâ€Amyloid Peptides: Contributions of the β25–35 Region to Aggregation and Neurotoxicity. Journal of Neurochemistry, 1995, 64, 253-265.	2.1	641
3	Progesterone receptors: Form and function in brain. Frontiers in Neuroendocrinology, 2008, 29, 313-339.	2.5	531
4	Protective actions of sex steroid hormones in Alzheimer's disease. Frontiers in Neuroendocrinology, 2009, 30, 239-258.	2.5	424
5	Estrogen Modulates Neuronal Bcl-xl Expression and β-Amyloid-Induced Apoptosis. Journal of Neurochemistry, 2001, 72, 1552-1563.	2.1	353
6	β-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiology of Aging, 1996, 17, 921-933.	1.5	297
7	Progesterone and Estrogen Regulate Alzheimer-Like Neuropathology in Female 3xTg-AD Mice. Journal of Neuroscience, 2007, 27, 13357-13365.	1.7	295
8	Thrombin Induces Apoptosis in Cultured Neurons and Astrocytes via a Pathway Requiring Tyrosine Kinase and RhoA Activities. Journal of Neuroscience, 1997, 17, 5316-5326.	1.7	289
9	Sex and the development of Alzheimer's disease. Journal of Neuroscience Research, 2017, 95, 671-680.	1.3	280
10	Aggregation-related toxicity of synthetic β-amyloid protein in hippocampal cultures. European Journal of Pharmacology, 1991, 207, 367-368.	2.7	279
11	Amino-terminal Deletions Enhance Aggregation of β-Amyloid Peptides in Vitro. Journal of Biological Chemistry, 1995, 270, 23895-23898.	1.6	276
12	Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 2001, 14, 1992-2002.	1.2	271
13	Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer's disease. Neurobiology of Aging, 2011, 32, 604-613.	1.5	223
14	Â-Amyloid-Induced Neuronal Apoptosis Involves c-Jun N-Terminal Kinase-Dependent Downregulation of Bcl-w. Journal of Neuroscience, 2005, 25, 1149-1158.	1.7	209
15	Sex differences in β-amyloid accumulation in 3xTg-AD mice: Role of neonatal sex steroid hormone exposure. Brain Research, 2010, 1366, 233-245.	1.1	207
16	Gender, sex steroid hormones, and Alzheimer's disease. Hormones and Behavior, 2013, 63, 301-307.	1.0	204
17	Rapid Communication: Ca ²⁺ Channel Blockers Attenuate βâ€Amyloid Peptide Toxicity to Cortical Neurons in Culture. Journal of Neurochemistry, 1994, 62, 372-375.	2.1	195
18	Testosterone attenuates β-amyloid toxicity in cultured hippocampal neurons. Brain Research, 2001, 919, 160-165.	1.1	194

#	Article	IF	CITATIONS
19	Age-Related Testosterone Depletion and the Development of Alzheimer Disease. JAMA - Journal of the American Medical Association, 2004, 292, 1431-1432.	3.8	185
20	Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Experimental Neurology, 1995, 132, 172-179.	2.0	162
21	Androgens activate mitogen-activated protein kinase signaling: Role in neuroprotection. Journal of Neurochemistry, 2005, 94, 1639-1651.	2.1	158
22	Androgens Regulate the Development of Neuropathology in a Triple Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2006, 26, 13384-13389.	1.7	142
23	Ultrastructural analysis of β-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Research, 1994, 661, 147-156.	1.1	140
24	Alzheimer's Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Current Diabetes Reports, 2014, 14, 476.	1.7	137
25	Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cellular Signalling, 2007, 19, 114-128.	1.7	136
26	β-Amyloid induces neuritic dystrophy in vitro. NeuroReport, 1992, 3, 769-772.	0.6	132
27	Differential Induction of Immediate Early Gene Proteins in Cultured Neurons by βâ€Amyloid (Aβ): Association of câ€Jun with Aβâ€Induced Apoptosis. Journal of Neurochemistry, 1995, 65, 1487-1498.	2.1	130
28	Alzheimerâ€essociated presenilinâ€2 confers increased sensitivity to poptosis in PC12 cells. FEBS Letters, 1996, 397, 50-54.	1.3	127
29	Ligand for Translocator Protein Reverses Pathology in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 8891-8897.	1.7	125
30	Androgens modulate β-amyloid levels in male rat brain. Journal of Neurochemistry, 2004, 87, 1052-1055.	2.1	123
31	β-Amyloid Neurotoxicity In Vitro: Evidence of Oxidative Stress but Not Protection by Antioxidants. Journal of Neurochemistry, 1997, 69, 1601-1611.	2.1	117
32	Androgen cell signaling pathways involved in neuroprotective actions. Hormones and Behavior, 2008, 53, 693-705.	1.0	117
33	Estrogen activates protein kinase C in neurons: role in neuroprotection. Journal of Neurochemistry, 2003, 84, 1340-1348.	2.1	114
34	Estrogen Regulates Bcl-w and Bim Expression: Role in Protection against Â-Amyloid Peptide-Induced Neuronal Death. Journal of Neuroscience, 2007, 27, 1422-1433.	1.7	113
35	β-Amyloid neurotoxicity: A discussion of in vitro findings. Neurobiology of Aging, 1992, 13, 587-590.	1.5	112
36	Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiology of Aging, 2013, 34, 1080-1089.	1.5	105

#	Article	IF	CITATIONS
37	Androgens modulate neuronal vulnerability to kainate lesion. Neuroscience, 2003, 122, 573-578.	1.1	101
38	Sex-Specific Effects of High Fat Diet on Indices of Metabolic Syndrome in 3xTg-AD Mice: Implications for Alzheimer's Disease. PLoS ONE, 2013, 8, e78554.	1.1	99
39	Testosterone regulation of Alzheimer-like neuropathology in male 3xTg-AD mice involves both estrogen and androgen pathways. Brain Research, 2010, 1359, 281-290.	1.1	98
40	Selective Estrogen Receptor Modulators Differentially Regulate Alzheimer-Like Changes in Female 3xTg-AD Mice. Endocrinology, 2008, 149, 2607-2611.	1.4	90
41	Sex hormones, aging, and Alzheimer's disease. Frontiers in Bioscience - Elite, 2012, 4, 976-97.	0.9	86
42	Rational pattern design for in vitro cellular networks using surface photochemistry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 607-616.	0.9	84
43	Androgen regulation of β-amyloid protein and the risk of Alzheimer's disease. Brain Research Reviews, 2008, 57, 444-453.	9.1	84
44	Continuous and Cyclic Progesterone Differentially Interact with Estradiol in the Regulation of Alzheimer-Like Pathology in Female 3×Transgenic-Alzheimer's Disease Mice. Endocrinology, 2010, 151, 2713-2722.	1.4	84
45	Sex hormones aging and Alzheimer s disease. Frontiers in Bioscience - Elite, 2012, E4, 976-997.	0.9	84
46	All-D-Enantiomers of β-Amyloid Exhibit Similar Biological Properties to All-L-β-Amyloids. Journal of Biological Chemistry, 1997, 272, 7431-7436.	1.6	82
47	β-Amyloid peptides induce degeneration of cultured rat microglia. Brain Research, 1993, 624, 121-125.	1.1	81
48	Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 130.	1.7	81
49	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81
50	The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of Aging, 2015, 36, 2282-2295.	1.5	80
51	Thrombin Attenuates Neuronal Cell Death and Modulates Astrocyte Reactivity Induced by βâ€Amyloid In Vitro. Journal of Neurochemistry, 1996, 66, 1374-1382.	2.1	78
52	Androgens regulate neprilysin expression: role in reducing βâ€amyloid levels. Journal of Neurochemistry, 2008, 105, 2477-2488.	2.1	74
53	Humanin Prevents Age-Related Cognitive Decline in Mice and is Associated with Improved Cognitive Age in Humans. Scientific Reports, 2018, 8, 14212.	1.6	74
54	The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiology of Aging, 2016, 37, 47-57.	1.5	70

#	Article	IF	CITATIONS
55	Obesity Accelerates Alzheimer-Related Pathology in <i>APOE4</i> but not <i>APOE3</i> Mice. ENeuro, 2017, 4, ENEURO.0077-17.2017.	0.9	70
56	Progesterone inhibits estrogenâ€mediated neuroprotection against excitotoxicity by downâ€regulating estrogen receptorâ€Î². Journal of Neurochemistry, 2010, 115, 1277-1287.	2.1	67
57	Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function. Journal of Neuroinflammation, 2014, 11, 162.	3.1	67
58	Obesity and sex interact in the regulation of Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2016, 67, 102-118.	2.9	65
59	APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. Acta Neuropathologica Communications, 2019, 7, 82.	2.4	64
60	Progestins inhibit the neuroprotective effects of estrogen in rat hippocampus. Brain Research, 2006, 1099, 206-210.	1.1	63
61	Progesterone Attenuates Oestrogen Neuroprotection Via Downregulation of Oestrogen Receptor Expression in Cultured Neurones. Journal of Neuroendocrinology, 2009, 21, 77-81.	1.2	61
62	Androgens, Aging, and Alzheimer's Disease. Endocrine, 2006, 29, 233-242.	2.2	59
63	Androgens Selectively Protect Against Apoptosis in Hippocampal Neurones. Journal of Neuroendocrinology, 2010, 22, 1013-1022.	1.2	59
64	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
65	Exercise increases the vulnerability of rat hippocampal neurons to kainate lesion. Brain Research, 2003, 971, 239-244.	1.1	58
66	17β-Estradiol and Progesterone Regulate Expression of β-Amyloid Clearance Factors in Primary Neuron Cultures and Female Rat Brain. Endocrinology, 2012, 153, 5467-5479.	1.4	58
67	Neuroprotective properties of selective estrogen receptor agonists in cultured neurons. Brain Research, 2005, 1045, 217-223.	1.1	57
68	Flutamide and Cyproterone Acetate Exert Agonist Effects: Induction of Androgen Receptor-Dependent Neuroprotection. Endocrinology, 2007, 148, 2936-2943.	1.4	55
69	Calretinin-immunoreactive neurons are resistant to β-amyloid toxicity in vitro. Brain Research, 1995, 671, 293-298.	1.1	53
70	Continuous versus Cyclic Progesterone Exposure Differentially Regulates Hippocampal Gene Expression and Functional Profiles. PLoS ONE, 2012, 7, e31267.	1.1	49
71	Progesterone blocks estrogen neuroprotection from kainate in middle-aged female rats. Neuroscience Letters, 2008, 445, 229-232.	1.0	44
72	Estrogen regulates bcl-x expression in rat hippocampus. NeuroReport, 2001, 12, 2797-2800.	0.6	41

#	Article	IF	CITATIONS
73	TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. Journal of Neuroinflammation, 2018, 15, 306.	3.1	40
74	Attenuation of βâ€Amyloid Neurotoxicity In Vitro by Potassiumâ€Induced Depolarization. Journal of Neurochemistry, 1996, 67, 1774-1777.	2.1	39
75	Caspase activation contributes to astrogliosis. Brain Research, 2012, 1450, 102-115.	1.1	38
76	Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Research, 2009, 1298, 1-12.	1.1	37
77	Evaluation of the effects of testosterone and luteinizing hormone on regulation of Î ² -amyloid in male 3xTg-AD mice. Brain Research, 2012, 1466, 137-145.	1.1	37
78	Age-related changes in serum and brain levels of androgens in male Brown Norway rats. NeuroReport, 2009, 20, 1534-1537.	0.6	34
79	TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neuroscience Letters, 2018, 683, 7-12.	1.0	28
80	Conventional protein kinase C isoforms mediate neuroprotection induced by phorbol ester and estrogen. Journal of Neurochemistry, 2006, 96, 204-217.	2.1	27
81	Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice. PLoS ONE, 2017, 12, e0178490.	1.1	26
82	Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats. Endocrinology, 2014, 155, 1398-1406.	1.4	24
83	<i>APOE</i> genotype affects metabolic and Alzheimerâ€related outcomes induced by Western diet in female EFAD mice. FASEB Journal, 2019, 33, 4054-4066.	0.2	22
84	The Influence of the Carboxyl Terminus of the Alzheimer AÎ ² Peptide on its Conformation, Aggregation, and Neurotoxic Properties. NeuroMolecular Medicine, 2002, 1, 81-94.	1.8	19
85	β-Amyloid Increases Enzyme Activity and Protein Levels of Glutamine Synthetase in Cultured Astrocytes. Experimental Neurology, 1996, 139, 167-171.	2.0	17
86	The synthetic estrogen 4-estren- $3\hat{l}_{\pm}$, $17\hat{l}^2$ -diol (estren) induces estrogen-like neuroprotection. Neurobiology of Disease, 2005, 19, 331-339.	2.1	16
87	Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons. Molecular and Cellular Endocrinology, 2014, 384, 52-60.	1.6	15
88	Effects of aging, high-fat diet, and testosterone treatment on neural and metabolic outcomes in male brown Norway rats. Neurobiology of Aging, 2019, 73, 145-160.	1.5	15
89	Aging Reduces Estradiol Protection Against Neural but Not Metabolic Effects of Obesity in Female 3xTg-AD Mice. Frontiers in Aging Neuroscience, 2020, 12, 113.	1.7	15
90	Second to fourth digit ratio (2D:4D) is associated with dementia in women. Early Human Development, 2020, 149, 105152.	0.8	9

#	Article	IF	CITATIONS
91	Microglial transcription profiles in mouse and human are driven by APOE4 and sex. IScience, 2021, 24, 103238.	1.9	9
92	Dementia risk in women higher in sameâ€sex than oppositeâ€sex twins. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12049.	1.2	8
93	Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase–Protein Kinase B–Clycogen Synthase Kinase 3β Signaling. Neuroscience, 2022, , .	1.1	7
94	Staining and Quantification of β-Amyloid Pathology in Transgenic Mouse Models of Alzheimer's Disease. Methods in Molecular Biology, 2020, 2144, 211-221.	0.4	5
95	Deconvolution of the confounding variations for reverse transcription quantitative real-time polymerase chain reaction by separate analysis of biological replicate data. Analytical Biochemistry, 2012, 427, 21-25.	1.1	4
96	Author's response to commentaries. Neurobiology of Aging, 1996, 17, 945-947.	1.5	3
97	Impact of Continuous Versus Discontinuous Progesterone on Estradiol Regulation of Neuron Viability and Sprouting After Entorhinal Cortex Lesion in Female Rats. Endocrinology, 2015, 156, 1091-1099.	1.4	3
98	Apoptosis in Alzheimer's Disease. Advances in Behavioral Biology, 1998, , 45-51.	0.2	2
99	Testosterone regulates Alzheimer's disease pathogenesis. , 2009, , 242-250.		1
100	P3-406: THE ROLE OF STEROID BIOSYNTHESIS IN THE PROTECTIVE ACTIONS OF LIGANDS FOR THE TRANSLOCATOR PROTEIN (TSPO). , 2014, 10, P779-P779.		0
101	P1â€021: TRANSCRIPTOMIC PROFILING OF MICROGLIA FROM AN ALZHEIMER'S DISEASE MOUSE MODEL AND FROM HUMAN INDUCED PLURIPOTENT STEM CELLS REVEALS EFFECTS OF THE APOE4 GENOTYPE. Alzheimer's and Dementia, 2019, 15, .	0.4	0