Andreas Birk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372766/publications.pdf

Version: 2024-02-01

		218677	233421
193	3,264	26	45
papers	citations	h-index	g-index
199	199	199	2225
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Merging Occupancy Grid Maps From Multiple Robots. Proceedings of the IEEE, 2006, 94, 1384-1397.	21.3	186
2	Fast Registration Based on Noisy Planes With Unknown Correspondences for 3-D Mapping. IEEE Transactions on Robotics, 2010, 26, 424-441.	10.3	181
3	Fast plane detection and polygonalization in noisy 3D range images. , 2008, , .		152
4	Multi-robot exploration under the constraints of wireless networking. Control Engineering Practice, 2007, 15, 435-445.	5.5	148
5	Product line engineering, the state of the practice. IEEE Software, 2003, 20, 52-60.	1.8	116
6	Validating the ISO/IEC 15504 measure of software requirements analysis process capability. IEEE Transactions on Software Engineering, 2000, 26, 541-566.	5.6	105
7	Online threeâ€dimensional SLAM by registration of large planar surface segments and closedâ€form poseâ€graph relaxation. Journal of Field Robotics, 2010, 27, 52-84.	6.0	99
8	Safety, Security, and Rescue Missions with an Unmanned Aerial Vehicle (UAV). Journal of Intelligent and Robotic Systems: Theory and Applications, 2011, 64, 57-76.	3.4	98
9	Rescue robotics — a crucial milestone on the road to autonomous systems. Advanced Robotics, 2006, 20, 595-605.	1.8	73
10	The Pinax-model for accurate and efficient refraction correction of underwater cameras in flat-pane housings. Ocean Engineering, $2017, 133, 9-22$.	4.3	68
11	Beyond points: Evaluating recent 3D scan-matching algorithms. , 2015, , .		60
12	On map merging. Robotics and Autonomous Systems, 2005, 53, 1-14.	5.1	58
13	A networking framework for teleoperation in safety, security, and rescue robotics. IEEE Wireless Communications, 2009, 16, 6-13.	9.0	48
14	Dexterous Underwater Manipulation from Onshore Locations: Streamlining Efficiencies for Remotely Operated Underwater Vehicles. IEEE Robotics and Automation Magazine, 2018, 25, 24-33.	2.0	44
15	Boosting cooperation by evolving trust. Applied Artificial Intelligence, 2000, 14, 769-784.	3.2	42
16	3D forward sensor modeling and application to occupancy grid based sensor fusion. , 2007, , .		42
17	Validating the ISO/IEC 15504 measures of software development process capability. Journal of Systems and Software, 2000, 51, 119-149.	4.5	41
18	Hough based terrain classification for realtime detection of drivable ground. Journal of Field Robotics, 2008, 25, 67-88.	6.0	41

#	Article	IF	Citations
19	Spectral registration of noisy sonar data for underwater 3D mapping. Autonomous Robots, 2011, 30, 307-331.	4.8	39
20	High Fidelity Tools for Rescue Robotics: Results and Perspectives. Lecture Notes in Computer Science, 2006, , 301-311.	1.3	39
21	Fast 3D mapping by matching planes extracted from range sensor point-clouds. , 2009, , .		38
22	Efficient Representation in Three-Dimensional Environment Modeling for Planetary Robotic Exploration. Advanced Robotics, 2010, 24, 1169-1197.	1.8	38
23	Spectral 6DOF Registration of Noisy 3D Range Data with Partial Overlap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 954-969.	13.9	32
24	Simultaneous localization and mapping with multimodal probability distributions. International Journal of Robotics Research, 2013, 32, 143-171.	8.5	32
25	CADDY Underwater Stereo-Vision Dataset for Human–Robot Interaction (HRI) in the Context of Diver Activities. Journal of Marine Science and Engineering, 2019, 7, 16.	2.6	32
26	Uncertainty analysis for optimum plane extraction from noisy 3D range-sensor point-clouds. Intelligent Service Robotics, 2010, 3, 37-48.	2.6	31
27	No More Heavy Lifting: Robotic Solutions to the Container Unloading Problem. IEEE Robotics and Automation Magazine, 2016, 23, 94-106.	2.0	31
28	RoboGuard, a teleoperated mobile security robot. Control Engineering Practice, 2002, 10, 1259-1264.	5.5	30
29	Generalized graph SLAM: Solving local and global ambiguities through multimodal and hyperedge constraints. International Journal of Robotics Research, 2016, 35, 601-630.	8.5	30
30	CBR for Experimental Software Engineering. Lecture Notes in Computer Science, 1998, , 235-254.	1.3	30
31	Online generation of an underwater photo map with improved Fourier Mellin based registration. , 2009, , .		27
32	Maximum likelihood mapping with spectral image registration. , 2010, , .		27
33	Fast and robust photomapping with an Unmanned Aerial Vehicle (UAV). , 2009, , .		26
34	Robotics in edutainment. , 0, , .		25
35	DexROV: Dexterous Undersea Inspection and Maintenance in Presence of Communication Latencies. IFAC-PapersOnLine, 2015, 48, 218-223.	0.9	25
36	Map evaluation using matched topology graphs. Autonomous Robots, 2016, 40, 761-787.	4.8	25

#	Article	IF	Citations
37	Revisiting uncertainty analysis for optimum planes extracted from 3D range sensor point-clouds., 2009, , .		23
38	Efficiently communicating map updates with the pose graph. , 2008, , .		21
39	3-D perception and modeling. IEEE Robotics and Automation Magazine, 2009, 16, 53-60.	2.0	21
40	Evaluation of map quality by matching and scoring high-level, topological map structures., 2013,,.		21
41	CADDYâ€"Cognitive Autonomous Diving Buddy: Two Years of Underwater Human-Robot Interaction. Marine Technology Society Journal, 2016, 50, 54-66.	0.4	21
42	Plane-based registration of sonar data for underwater 3D mapping. , 2010, , .		20
43	The CO ³ AUVs (Cooperative Cognitive Control for Autonomous Underwater) Tj ETQq1 1	. 0.784314	· rgBT /Overlo
44	A quantitative assessment of structural errors in grid maps. Autonomous Robots, 2010, 28, 187-196.	4.8	19
45	The European Project MORPH: Distributed UUV Systems for Multimodal, 3D Underwater Surveys. Marine Technology Society Journal, 2016, 50, 26-41.	0.4	18
46	Dexterous Undersea Interventions with Far Distance Onshore Supervision: the DexROV Project. IFAC-PapersOnLine, 2016, 49, 414-419.	0.9	18
47	Augmented autonomy: Improving human-robot team performance in Urban search and rescue. , 2008, , .		17
48	The jacobs robotics approach to object recognition and localization in the context of the ICRA'11 Solutions in Perception Challenge. , 2012, , .		17
49	Determining Map Quality through an Image Similarity Metric. Lecture Notes in Computer Science, 2009, , 355-365.	1.3	17
50	On-board control in the RoboCup small robots league. Advanced Robotics, 2000, 14, 27-36.	1.8	16
51	Uncertainty estimation for a 6-DoF spectral registration method as basis for sonar-based underwater 3D SLAM. , 2012, , .		16
52	Scale-Free Registrations in 3D: 7 Degrees of Freedom with Fourier Mellin SOFT Transforms. International Journal of Computer Vision, 2018, 126, 731-750.	15.6	16
53	Model based design of a stereo vision system for intelligent deep-sea operations. Measurement: Journal of the International Measurement Confederation, 2019, 144, 298-310.	5.0	16
54	Systematic population, utilization, and maintenance of a repository for comprehensive reuse. Lecture Notes in Computer Science, 2000, , 25-50.	1.3	15

#	Article	IF	Citations
55	An efficient strategy for data exchange in multi-robot mapping under underwater communication constraints., 2010,,.		15
56	What is Robotics? An Interdisciplinary Field Is Getting Even More Diverse [Education]. IEEE Robotics and Automation Magazine, 2011, 18, 94-95.	2.0	15
57	Combining Exploration and Ad-Hoc Networking in RoboCup Rescue. Lecture Notes in Computer Science, 2005, , 236-246.	1.3	15
58	Challenges for Requirements Engineering and Management in Software Product Line Development. , 2007, , 300-305.		15
59	Learning to Trust. Lecture Notes in Computer Science, 2001, , 133-144.	1.3	14
60	A Robotics Course during COVID-19: Lessons Learned and Best Practices for Online Teaching beyond the Pandemic. Robotics, 2021, 10, 5.	3.5	14
61	Fast 6-DOF path planning for Autonomous Underwater Vehicles (AUV) based on 3D plane mapping. , 2011, , .		13
62	The MORPH concept and its application in marine research., 2013,,.		13
63	Overview of the FP7 project & Dystanov (CADDY & Cognitive Autonomous Diving Buddy & Cognitive Buddy &		13
64	Robust 3D object modeling with a low-cost RGBD-sensor and AR-markers for applications with untrained end-users. Robotics and Autonomous Systems, 2015, 66, 1-17.	5.1	13
65	Efficient continuous system integration and validation for deep-sea robotics applications. , 2017, , .		13
66	RoboCube a "universal―"special purpose―Hardware for the RoboCup small robots league. , 1998, , 331-340.		13
67	Fast Detection of Polygons in 3D Point Clouds from Noise-Prone Range Sensors. , 2007, , .		12
68	Gesture-recognition as basis for a human robot interface (HRI) on a AUV. , 2011, , .		12
69	Visual diver detection using multi-descriptor nearest-class-mean random forests in the context of underwater Human Robot Interaction (HRI)., 2015,,.		12
70	CADDY project, year 3: The final validation trials. , 2017, , .		12
71	Underwater navigation using visual markers in the context of intervention missions. International Journal of Advanced Robotic Systems, 2019, 16, 172988141983896.	2.1	12
72	Modeling underwater acoustic communications for multi-robot missions in a robotics simulator. , 2010, , .		11

#	Article	IF	Citations
73	Stereo-vision based diver pose estimation using LSTM recurrent neural networks for AUV navigation guidance. , $2017, \ldots$		11
74	Classification and Localization of Naval Mines With Superellipse Active Contours. IEEE Journal of Oceanic Engineering, 2019, 44, 767-782.	3.8	11
75	Surface Representations for 3D Mapping. KI - Kunstliche Intelligenz, 2010, 24, 249-254.	3.2	10
76	Evaluation of the robustness of planar-patches based 3D-registration using marker-based ground-truth in an outdoor urban scenario. , 2010, , .		10
77	Exploration Strategies for a Robot with a Continously Rotating 3D Scanner. Lecture Notes in Computer Science, 2010, , 374-386.	1.3	10
78	Revisiting Superquadric Fitting: A Numerically Stable Formulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 220-233.	13.9	10
79	A Characterization of 3D Sensors for Response Robots. Lecture Notes in Computer Science, 2010, , 264-275.	1.3	10
80	Programming with behavior-processes. Robotics and Autonomous Systems, 2002, 39, 115-127.	5.1	9
81	Sub-pixel depth accuracy with a time of flight sensor using multimodal Gaussian analysis. , 2008, , .		9
82	Using Robust Spectral Registration for Scan Matching of Sonar Range Data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 611-616.	0.4	9
83	Using a fiducial map metric for assessing map quality in the context of RoboCup Rescue. , 2011, , .		9
84	Object recognition in RGBD images of cluttered environments using graph-based categorization with unsupervised learning of shape parts. , 2013 , , .		9
85	Velvet fingers: Grasp planning and execution for an underactuated gripper with active surfaces. , 2014,		9
86	Segmentation and classification using active contours based superellipse fitting on side scan sonar images for marine demining. , 2015 , , .		9
87	Distributed Communicative Exploration under underwater communication constraints. , $2011, \ldots$		8
88	Synthetic Aperture Sonar (SAS) without Navigation: Scan Registration as Basis for Near Field Synthetic Imaging in 2D. Sensors, 2020, 20, 4440.	3.8	8
89	Robotics Labs and Other Hands-On Teaching During COVID-19: Change Is Here to Stay?. IEEE Robotics and Automation Magazine, 2021, 28, 92-102.	2.0	8
90	Underwater Vision-Based Gesture Recognition: A Robustness Validation for Safe Human–Robot Interaction. IEEE Robotics and Automation Magazine, 2021, 28, 67-78.	2.0	8

#	Article	IF	Citations
91	A HMI Supporting Adjustable Autonomy of Rescue Robots. Lecture Notes in Computer Science, 2006, , 255-266.	1.3	8
92	A Rescue Robot Control Architecture Ensuring Safe Semi-autonomous Operation. Lecture Notes in Computer Science, 2003, , 254-262.	1.3	8
93	A multiagent system based on heterogeneous robots. Lecture Notes in Computer Science, 1998, , 13-24.	1.3	7
94	Extraction of Semantic Floor Plans from 3D Point Cloud Maps. , 2007, , .		7
95	3D data collection at Disaster City at the 2008 NIST Response Robot Evaluation Exercise (RREE)., 2009,,		7
96	Object shape categorization in RGBD images using hierarchical graph constellation models based on unsupervisedly learned shape parts described by a set of shape specificity levels. , 2014, , .		7
97	Object recognition and localization for robust grasping with a dexterous gripper in the context of container unloading. , $2014, , .$		7
98	EU project MORPH: Current Status After 3 Years of Cooperation Under and Above Water. IFAC-PapersOnLine, 2015, 48, 119-124.	0.9	7
99	Improved Fourier Mellin Invariant for Robust Rotation Estimation with Omni-Cameras., 2019,,.		7
100	Communicative Exploration with Robot Packs. Lecture Notes in Computer Science, 2006, , 267-278.	1.3	7
101	An N-player prisoner's dilemma in a robotic ecosystem. Robotics and Autonomous Systems, 2002, 39, 223-233.	5.1	6
102	Using Requirements Management Tools in Software Product Line Engineering: The State of the Practice. , 2007, , .		6
103	Incorporating large scale SSRR scenarios into the high fidelity simulator USARSim. , 2009, , .		6
104	Where Else Do You See Cheering Crowds in a Classroom? [Education. IEEE Robotics and Automation Magazine, 2010, 17, 20-20.	2.0	6
105	Spectral registration of volume data for 6-DOF spatial transformations plus scale. , 2011, , .		6
106	Cooperative Cognitive Control for Autonomous Underwater Vehicles (CO3AUVs): overview and progresses in the 3rd project year. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 361-366.	0.4	6
107	The ESA Lunar Robotics Challenge: Simulating operations at the lunar south pole. Journal of Field Robotics, 2012, 29, 601-626.	6.0	6
108	DexROV: Enabling effective dexterous ROV operations in presence of communication latency., 2015,,.		6

#	Article	IF	CITATIONS
109	Adaptive Navigation Scheme for Optimal Deep-Sea Localization Using Multimodal Perception Cues. , 2019, , .		6
110	Robot Learning and Self-Sufficiency: What the energy-level can tell us about a robot's performance. Lecture Notes in Computer Science, 1998, , 109-125.	1.3	6
111	A Novel Approach to Efficient Error Correction for the SwissRanger Time-of-Flight 3D Camera. Lecture Notes in Computer Science, 2009, , 247-258.	1.3	6
112	Using Simulation to Visualise and Analyse Product-Process Dependencies in Software Development Projects. Lecture Notes in Computer Science, 2000, , 88-102.	1.3	5
113	On the effects of Sampling Resolution in Improved Fourier Mellin based Registration for Underwater Mapping. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 617-622.	0.4	5
114	A short overview of recent advances in map evaluation. , 2012, , .		5
115	The European R&D-Project MORPH: Marine robotic systems of self-organizing, logically linked physical nodes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 226-231.	0.4	5
116	Advances in underwater mapping and their application potential for Safety, Security, and Rescue Robotics (SSRR). , 2012, , .		5
117	Uncertainty estimation of AR-marker poses for graph-SLAM optimization in 3D object model generation with RGBD data., 2013,,.		5
118	A Distributed Algorithm for Cooperative 3D Exploration under Communication Constraints. Paladyn, 2013, 4, .	2.7	5
119	Representing and solving local and global ambiguities as multimodal and hyperedge constraints in a generalized graph SLAM framework. , 2014, , .		5
120	Fitting superquadrics in noisy, partial views from a low-cost RGBD sensor for recognition and localization of sacks in autonomous unloading of shipping containers. , 2014, , .		5
121	CADDY Project, Year 1: Overview of Technological Developments and Cooperative Behavioursâ [*] IFAC-PapersOnLine, 2015, 48, 125-130.	0.9	5
122	Hierarchical graph-based discovery of non-primitive-shaped objects in unstructured environments. , 2016, , .		5
123	Full 3D navigation correction using low frequency visual tracking with a stereo camera. , 2016, , .		5
124	Seafloor classification for mine countermeasures operations using synthetic aperture sonar images. , 2017, , .		5
125	Robust Continuous System Integration for Critical Deep-Sea Robot Operations Using Knowledge-Enabled Simulation in the Loop. , $2018, \ldots$		5
126	Seeing through the forest and the trees with drones. Science Robotics, 2021, 6, .	17.6	5

#	Article	IF	CITATIONS
127	A Fuzzy Controller for Autonomous Negotiation of Stairs by a Mobile Robot with Adjustable Tracks. Lecture Notes in Computer Science, 2008, , 196-207.	1.3	5
128	Detecting Humans in 2D Thermal Images by Generating 3D Models. Lecture Notes in Computer Science, 2007, , 293-307.	1.3	5
129	Diver detection by motion-segmentation and shape-analysis from a moving vehicle. , 2011, , .		5
130	Fully Autonomous Operations of a Jacobs Rugbot in the RoboCup Rescue Robot League 2006., 2007,,.		4
131	Optimized Octtree Datastructure and Access Methods for 3D Mapping. , 2007, , .		4
132	The True Spirit of RoboCup [Education. IEEE Robotics and Automation Magazine, 2010, 17, 108-108.	2.0	4
133	Using iFMI spectral registration for video stabilization and motion detection by an Unmanned Aerial Vehicle (UAV). , $2011, \ldots$		4
134	Physics-based damage-aware manipulation strategy planning using Scene Dynamics Anticipation. , 2016, , .		4
135	Recognition and Localization of Sacks for Autonomous Container Unloading by Fitting Superquadrics in Noisy, Partial Views from a Low-cost RGBD Sensor. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 88, 57-71.	3.4	4
136	From Multi-Modal Property Dataset to Robot-Centric Conceptual Knowledge About Household Objects. Frontiers in Robotics and Al, 2021, 8, 476084.	3.2	4
137	The VUB Al-lab RoboCup'99 Small League Team. Lecture Notes in Computer Science, 2000, , 687-690.	1.3	4
138	The small league RoboCup team of the VUB Al-Lab. Lecture Notes in Computer Science, 1999, , 410-415.	1.3	4
139	A New Mechatronic Component for Adjusting the Footprint of Tracked Rescue Robots. Lecture Notes in Computer Science, 2007, , 450-457.	1.3	4
140	Mobile Robot Communication Without the Drawbacks of Wireless Networking. Lecture Notes in Computer Science, 2006, , 585-592.	1.3	4
141	A product-process dependency definition method. , 1998, , .		3
142	Reconnaissance and camp security missions with an Unmanned Aerial Vehicle (UAV) at the 2009 European Land Robots Trials (ELROB)., 2009,,.		3
143	Extraction of quadrics from noisy point-clouds using a sensor noise model. , 2010, , .		3
144	Editorial: Safety, security, and rescue robotics special issue. Journal of Field Robotics, 2011, 28, 813-816.	6.0	3

#	Article	IF	Citations
145	Utilizing color information in 3D scan-registration using planar-patches matching. , 2012, , .		3
146	Underwater stereo data acquisition and 3D registration with a spectral method., 2013,,.		3
147	The MORPH project: Actual results. , 2015, , .		3
148	Robotic bridge inspection within strategic flood evacuation planning. , 2017, , .		3
149	A Divide and Conquer Method for 3D Registration of Inhomogeneous, Partially Overlapping Scans with Fourier Mellin SOFT (FMS). , 2020, , .		3
150	Robotics and Intelligent Systems: A New Curriculum Development and Adaptations Needed in Coronavirus Times. Advances in Intelligent Systems and Computing, 2022, , 81-93.	0.6	3
151	Heterogeneity and On-Board Control in the Small Robots League. Lecture Notes in Computer Science, 2000, , 196-209.	1.3	3
152	Planetary Exploration in USARsim: A Case Study Including Real World Data from Mars. Lecture Notes in Computer Science, 2009, , 463-472.	1.3	3
153	Towards Cooperative and Decentralized Mapping in the Jacobs Virtual Rescue Team. Lecture Notes in Computer Science, 2009, , 225-234.	1.3	3
154	A Framework for the Continuous Monitoring and Evaluation of Improvement Programmes. Lecture Notes in Computer Science, 2000, , 20-35.	1.3	2
155	Simulating Underwater Acoustic Communications in a High Fidelity Robotics Simulator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 587-592.	0.4	2
156	Using recursive spectral registrations to determine brokenness as measure of structural map errors. , 2010, , .		2
157	Cooperative 3D mapping under underwater communication constraints. , 2011, , .		2
158	Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation. , 2011, , .		2
159	Towards Pathplanning for Unmanned Ground Vehicles (UGV) inÂ3D Plane-Maps of Unstructured Environments. KI - Kunstliche Intelligenz, 2011, 25, 141-144.	3.2	2
160	Cooperative 3D Exploration under Communication Constraints. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 89-93.	0.4	2
161	Large-scale mosaicking with spectral registration based simultaneous localization and mapping (iFMI-SLAM) in the Ligurian Sea. , $2013, \ldots$		2
162	Robust estimation of camera-tilt for iFMI based underwater photo-mapping using a calibrated monocular camera. , 2013, , .		2

#	Article	IF	CITATIONS
163	Large-scale image mosaicking using multimodal hyperedge constraints from multiple registration methods within the Generalized Graph SLAM framework. , $2014, \ldots$		2
164	CADDY Project, Year 2: The First Validation Trials**This work is supported by the European Commission under the FP7-ICT project "CADDY - Cognitive Autonomous Diving Buddy" Grant Agreement No. 611373 IFAC-PapersOnLine, 2016, 49, 420-425.	0.9	2
165	Automated species counting using a hierarchical classification approach with Haar cascades and multi-descriptor random forests. , 2016, , .		2
166	Robotic bridge statics assessment within strategic flood evacuation planning using low-cost sensors. , 2017, , .		2
167	Visual Object Categorization Based on Hierarchical Shape Motifs Learned From Noisy Point Cloud Decompositions. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 313-338.	3.4	2
168	Using Rescue Robots to Increase Construction Site Safety., 2006,,.		2
169	Using Different Humanoid Robots for Science Edutainment of Secondary School Pupils. Lecture Notes in Computer Science, 2009, , 451-462.	1.3	2
170	Learning of an anticipatory world-model and the quest for general versus reinforced knowledge. , 1998, , .		1
171	Towards Object Classification Using 3D Sensor Data. , 2008, , .		1
172	A Corner for Educational Robotics Competitions. IEEE Robotics and Automation Magazine, 2012, 19, 21-21.	2.0	1
173	Initial results of cooperative AUV exploration in a high-fidelity simulation using real-world data from Monte da Guia, Azores. , 2013 , , .		1
174	Using fiducials in 3D map evaluation., 2015,,.		1
175	Underwater place recognition in noisy stereo data using FAB-MAP with a multimodal vocabulary from 2D texture and 3D surface descriptors. , 2015, , .		1
176	Anticipation and attention for robust object recognition with RGBD-data in an industrial application scenario. , $2016, , .$		1
177	High-Fidelity Deep-Sea Perception Using Simulation in the Loop. IFAC-PapersOnLine, 2018, 51, 32-37.	0.9	1
178	Registration of Magnetic Resonance Tomography (MRT) Data with a Low Frequency Adaption of Fourier-Mellin-SOFT (LF-FMS). Sensors, 2021, 21, 2581.	3.8	1
179	Trends in Learning Software Organizations: Current Needs and Future Solutions. Lecture Notes in Computer Science, 2005, , 70-75.	1.3	1
180	INTERDISCIPLINARY APPROACHES TO ROBOT LEARNING: INTRODUCTION. World Scientific Series in Robotics and Intelligent Systems, 2000, , $1\text{-}7$.	0.1	1

#	Article	IF	Citations
181	Continuous system integration and validation for underwater perception in offshore inspection and intervention tasks., 2020,, 9-75.		1
182	An overview of the extended VUB ecosystem, a MAS of heterogeneous robots. , 0, , .		0
183	Roboguard, A Teleoperated Mobile Security Robot. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 247-252.	0.4	O
184	Future RAS Support for Summer Schools [Education]. IEEE Robotics and Automation Magazine, 2011, 18, 20-20.	2.0	0
185	Propose an RAS Summer School [Education]. IEEE Robotics and Automation Magazine, 2012, 19, 104-107.	2.0	0
186	Multi-robot exploration with AUVs on cliffs and other 3D structures with a predominant orientation. , $2015, , .$		0
187	Visual speed adaptation for improved sensor coverage in a multi-vehicle survey mission. , 2016, , .		0
188	Conceptualization of Object Compositions Using Persistent Homology. , 2018, , .		0
189	Applying Behavior-Oriented Robotics to a Mobile Security Device. Lecture Notes in Computer Science, 2001, , 5-15.	1.3	O
190	From Games to Applications: Component Reuse in Rescue Robots. Lecture Notes in Computer Science, 2005, , 669-676.	1.3	0
191	Vectorization of Grid Maps by an Evolutionary Algorithm. Lecture Notes in Computer Science, 2007, , 458-465.	1.3	0
192	Creating Photo Maps with an Aerial Vehicle in USARsim. Lecture Notes in Computer Science, 2010, , 35-45.	1.3	0
193	Using Requirements Management Tools in Software Product Line Engineering: The State of the Practice. , 2007, , .		0