List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved MSC Minimal Criteria to Maximize Patient Safety: A Call to Embrace Tissue Factor and Hemocompatibility Assessment of MSC Products. Stem Cells Translational Medicine, 2022, 11, 2-13.	3.3	74
2	Celebrating 40 Years as the Trusted Source for Stem Cell Manuscripts. Stem Cells, 2022, 40, 1.	3.2	0
3	Combination product of dermal matrix, preconditioned human mesenchymal stem cells and timolol promotes wound healing in the porcine wound model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1615-1623.	3.4	4
4	The oromaxillofacial region as a model for a one-health approach in regenerative medicine. American Journal of Veterinary Research, 2022, 83, 291-297.	0.6	0
5	Autologous Muscleâ€Derived Cell Therapy for Swallowing Impairment in Patients Following Treatment for Head and Neck Cancer. Laryngoscope, 2021, , .	2.0	4
6	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.7	45
7	Subretinal versus intravitreal administration of human CD34+ bone marrow-derived stem cells in a rat model of inherited retinal degeneration. Annals of Translational Medicine, 2021, 9, 1275-1275.	1.7	9
8	Analysis of the retinal capillary plexus layers in a murine model with diabetic retinopathy: effect of intravitreal injection of human CD34+ bone marrow stem cells. Annals of Translational Medicine, 2021, 9, 1273-1273.	1.7	4
9	Mechanisms of modulation and differentiation in mesenchymal stem/stromal cells. Stem Cells, 2021, 39, 1-2.	3.2	2
10	An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Frontiers in Molecular Neuroscience, 2021, 14, 789913.	2.9	2
11	Effects of Micronized Cartilage Matrix on Cartilage Repair in Osteochondral Lesions of the Talus. Cartilage, 2020, 11, 316-322.	2.7	8
12	Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells, 2020, 38, 15-21.	3.2	148
13	Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Experimental Eye Research, 2020, 190, 107865.	2.6	24
14	The age of immunotherapy-Celebrating STEM CELLS ' contribution to understanding mechanisms of immune system development and modulation. Stem Cells, 2020, 38, 4-5.	3.2	0
15	Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem Cells Translational Medicine, 2020, 9, 1353-1364.	3.3	34
16	NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Research, 2020, 49, 102043.	0.7	19
17	Endothelial cells derived from patients' induced pluripotent stem cells for sustained factor VIII delivery and the treatment of hemophilia A. Stem Cells Translational Medicine, 2020, 9, 686-696.	3.3	19
18	Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells, 2019, 38, 231-245.	3.2	19

#	Article	IF	CITATIONS
19	Now More Than Ever: The Importance of Reporting Evidence-Based Science. Stem Cells, 2019, 37, 4-5.	3.2	0
20	MSC and Mentoring. Stem Cells and Development, 2019, 28, 708-708.	2.1	0
21	Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochemical and Biophysical Research Communications, 2019, 512, 729-735.	2.1	89
22	Enhancing Retention of Human Bone Marrow Mesenchymal Stem Cells with Prosurvival Factors Promotes Angiogenesis in a Mouse Model of Limb Ischemia. Stem Cells and Development, 2019, 28, 114-119.	2.1	10
23	Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions. Transfusion, 2019, 59, 893-897.	1.6	13
24	Generation of human vascularized brain organoids. NeuroReport, 2018, 29, 588-593.	1.2	351
25	Research Leads to Approved Therapies in the New Era of Living Medicine. Stem Cells, 2018, 36, 1-3.	3.2	0
26	Potential Long-Term Treatment of Hemophilia a By Early Postnatal Co-Transplantation of Cord Blood Derived Endothelial Colony-Forming Cells and Placental Mesenchymal Stem Cells. Blood, 2018, 132, 3318-3318.	1.4	0
27	Highly Efficient Differentiation of Endothelial Cells from Pluripotent Stem Cells Requires the MAPK and the PI3K Pathways. Stem Cells, 2017, 35, 909-919.	3.2	113
28	Cutting Edge Advances in Stem Cell Biology and Therapy. Stem Cells, 2017, 35, 1-2.	3.2	1
29	Protective Effect of Intravitreal Administration of Exosomes Derived from Mesenchymal Stem Cells on Retinal Ischemia. Current Eye Research, 2017, 42, 1358-1367.	1.5	81
30	Novel murine xenograft model for the evaluation of stem cell therapy for profound dysphagia. Laryngoscope, 2017, 127, E359-E363.	2.0	5
31	Concise Review: Stem Cells in Osteoimmunology. Stem Cells, 2017, 35, 1461-1467.	3.2	43
32	Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports, 2017, 9, 177-189.	4.8	72
33	Advances in bone marrow stem cell therapy for retinal dysfunction. Progress in Retinal and Eye Research, 2017, 56, 148-165.	15.5	89
34	Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration. , 2016, 57, 4125.		34
35	"Nextâ€generation―mesenchymal stem or stromal cells for the in vivo delivery of bioactive factors: progressing toward the clinic. Transfusion, 2016, 56, 15S-7S.	1.6	13
36	Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrowâ€Derived Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 2016, 117, 2128-2137.	2.6	25

#	Article	IF	CITATIONS
37	Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts. Cell Transplantation, 2016, 25, 677-686.	2.5	53
38	Mesenchymal stem cell-based therapy for ischemic stroke. Chinese Neurosurgical Journal, 2016, 2, .	0.9	8
39	Engineered BDNF producing cells as a potential treatment for neurologic disease. Expert Opinion on Biological Therapy, 2016, 16, 1025-1033.	3.1	45
40	Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 2016, 34, 601-613.	3.2	407
41	2015 Year in Review - Advancing the Fields of Stem Cell Biology and Therapy. Stem Cells, 2016, 34, 11-12.	3.2	0
42	Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16053.	4.1	50
43	Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Molecular Therapy, 2016, 24, 965-977.	8.2	140
44	Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols. Journal of Cellular Biochemistry, 2016, 117, 300-307.	2.6	15
45	BMI1 Regulation of Self-Renewal and Multipotency in Human Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2016, 11, 131-140.	1.3	14
46	Clinical trial perspective for adult and juvenile Huntington′s disease using genetically-engineered mesenchymal stem cells. Neural Regeneration Research, 2016, 11, 702.	3.0	32
47	Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs. Stem Cells Translational Medicine, 2015, 4, 1173-1186.	3.3	15
48	Human Myoblast and Mesenchymal Stem Cell Interactions Visualized by Videomicroscopy. Human Gene Therapy Methods, 2015, 26, 193-196.	2.1	3
49	New Advances in Understanding Stem Cell Fate and Function. Stem Cells, 2015, 33, 313-315.	3.2	3
50	Hypoxic Preconditioning of Mesenchymal Stromal Cells Induces Metabolic Changes, Enhances Survival, and Promotes Cell Retention In Vivo. Stem Cells, 2015, 33, 1818-1828.	3.2	171
51	Inosculation of Blood Vessels Allows Early Perfusion and Vitality of Bladder Grafts—Implications for Bioengineered Bladder Wall. Tissue Engineering - Part A, 2015, 21, 1906-1915.	3.1	15
52	Companion animals: Translational scientist's new best friends. Science Translational Medicine, 2015, 7, 308ps21.	12.4	145
53	Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regenerative Medicine, 2015, 10, 623-646.	1.7	36
54	Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Translational Medicine, 2015, 4, 1187-1198.	3.3	33

#	Article	IF	CITATIONS
55	Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells From Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery. World Neurosurgery, 2015, 84, 1256-1266.e1.	1.3	14
56	Safety and Efficacy of a tCD25 Preselective Combination Anti-HIV Lentiviral Vector in Human Hematopoietic Stem and Progenitor Cells. Stem Cells, 2015, 33, 870-879.	3.2	10
57	Stem Cells in Canine Spinal Cord Injury – Promise for Regenerative Therapy in a Large Animal Model of Human Disease. Stem Cell Reviews and Reports, 2015, 11, 180-193.	5.6	47
58	Ethanol Negatively Regulates Hepatic Differentiation of hESC by Inhibition of the MAPK/ERK Signaling Pathway In Vitro. PLoS ONE, 2014, 9, e112698.	2.5	28
59	Canine Epidermal Neural Crest Stem Cells: Characterization and Potential as Therapy Candidate for a Large Animal Model of Spinal Cord Injury. Stem Cells Translational Medicine, 2014, 3, 334-345.	3.3	15
60	Autologous myoblasts attenuate atrophy and improve tongue force in a denervated tongue model: A pilot study. Laryngoscope, 2014, 124, E20-E26.	2.0	19
61	Editorial: 2013-A Year of Clinical Success and Great Scientific Innovation in the Stem Cell Field. Stem Cells, 2014, 32, 1-2.	3.2	3
62	Natural Killer Cell Subsets Differentially Reject Embryonic Stem Cells Based on Licensing. Transplantation, 2014, 97, 992-998.	1.0	21
63	Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1074-1082.	3.2	123
64	Clinical translation of stem cells: insight for cartilage therapies. Critical Reviews in Biotechnology, 2014, 34, 89-100.	9.0	28
65	Crosstalk Between Adrenergic and Toll-Like Receptors in Human Mesenchymal Stem Cells and Keratinocytes: A Recipe for Impaired Wound Healing. Stem Cells Translational Medicine, 2014, 3, 745-759.	3.3	31
66	Genetically Engineered Mesenchymal Stem Cells for Cell and Gene Therapy. , 2013, , 321-354.		0
67	Highly Efficient Differentiation of Functional Hepatocytes From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 409-419.	3.3	78
68	Insulin and igfs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells, 2013, 31, 2095-2103.	3.2	68
69	Immunosuppressive Activity of Adult Marrow Mesenchymal Stromal Cells on Innate Immune Cells in the Central Nervous System. Advances in Neuroimmune Biology, 2013, 4, 177-185.	0.7	1
70	Mesenchymal Stem Cells for Trinucleotide Repeat Disorders. Methods in Molecular Biology, 2013, 1010, 79-91.	0.9	4
71	Lysophosphatidic Acid Enhances Stromal Cell-Directed Angiogenesis. PLoS ONE, 2013, 8, e82134.	2.5	10

18 Mesenchymal stem cells as a carrier for tumor-targeting therapeutics. , 2013, , 353-380.

1

#	Article	IF	CITATIONS
73	Role of miRNAs in Neuronal Differentiation from Human Embryonic Stem Cell—Derived Neural Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 1129-1137.	5.6	54
74	Autoimmune T Cells Lured to a FASL Web of Death by MSCs. Cell Stem Cell, 2012, 10, 485-487.	11.1	5
75	Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Molecular and Cellular Neurosciences, 2012, 49, 271-281.	2.2	71
76	CD25 Preselective Anti-HIV Vectors for Improved HIV Gene Therapy. Human Gene Therapy Methods, 2012, 23, 366-375.	2.1	7
77	Long-Term Effects of Intravitreal Injection of GMP-Grade Bone-Marrow–Derived CD34 ⁺ Cells in NOD-SCID Mice with Acute Ischemia-Reperfusion Injury. , 2012, 53, 986.		58
78	Editorial: Our Top 10 Developments in Stem Cell Biology over the Last 30 Years. Stem Cells, 2012, 30, 2-9.	3.2	29
79	Stem Cells New Editor. Stem Cells, 2012, 30, 1-1.	3.2	Ο
80	Concise Review: Induced Pluripotent Stem Cellâ€Đerived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products. Stem Cells, 2012, 30, 42-47.	3.2	242
81	Generation of an HIV-1-Resistant Immune System with CD34 ⁺ Hematopoietic Stem Cells Transduced with a Triple-Combination Anti-HIV Lentiviral Vector. Journal of Virology, 2012, 86, 5719-5729.	3.4	80
82	Genetically Engineered Mesenchymal Stem Cells as a Proposed Therapeutic for Huntington's Disease. Molecular Neurobiology, 2012, 45, 87-98.	4.0	69
83	Effects on Proliferation and Differentiation of Multipotent Bone Marrow Stromal Cells Engineered to Express Growth Factors for Combined Cell and Gene Therapy. Stem Cells, 2011, 29, 1727-1737.	3.2	115
84	Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transplantation, 2011, 17, 418-427.	2.4	94
85	Generation of HIV-1 Resistant and Functional Macrophages From Hematopoietic Stem Cell–derived Induced Pluripotent Stem Cells. Molecular Therapy, 2011, 19, 584-593.	8.2	69
86	Characterization and <i>In Vivo</i> Testing of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells. Tissue Engineering - Part A, 2011, 17, 1517-1525.	3.1	85
87	Small Animal Models of Tissue Regeneration. , 2011, , 379-391.		1
88	Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative Medicine, 2010, 5, 933-946.	1.7	452
89	Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Advanced Drug Delivery Reviews, 2010, 62, 1167-1174.	13.7	159
90	STEM CELLS' Position Statement on hESC Research. Stem Cells, 2010, 28, 1A-1A.	3.2	0

#	Article	IF	CITATIONS
91	Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction. Journal of Translational Medicine, 2010, 8, 24.	4.4	41
92	shRNA-Mediated Decreases in c-Met Levels Affect the Differentiation Potential of Human Mesenchymal Stem Cells and Reduce Their Capacity for Tissue Repair. Tissue Engineering - Part A, 2010, 16, 2627-2639.	3.1	11
93	Preintegration HIV-1 Inhibition by a Combination Lentiviral Vector Containing a Chimeric TRIM5α Protein, a CCR5 shRNA, and a TAR Decoy. Molecular Therapy, 2009, 17, 2103-2114.	8.2	50
94	Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model. Hepatology, 2009, 49, 1992-2000.	7.3	47
95	Contribution of human hematopoietic stem cells to liver repair. Seminars in Immunopathology, 2009, 31, 411-419.	6.1	32
96	Specific Transduction of HIV-Susceptible Cells for CCR5 Knockdown and Resistance to HIV Infection: A Novel Method for Targeted Gene Therapy and Intracellular Immunization. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 52, 152-161.	2.1	35
97	Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood, 2009, 113, 5340-5351.	1.4	149
98	Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells. Stem Cells, 2008, 26, 2173-2182.	3.2	609
99	Lentiviral-Transduced Human Mesenchymal Stem Cells Persistently Express Therapeutic Levels of Enzyme in a Xenotransplantation Model of Human Disease. Stem Cells, 2008, 26, 1713-1722.	3.2	88
100	Fluorophore-Conjugated Iron Oxide Nanoparticle Labeling and Analysis of Engrafting Human Hematopoietic Stem Cells. Stem Cells, 2008, 26, 517-524.	3.2	56
101	Widespread Nonhematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity. Stem Cells, 2008, 26, 611-620.	3.2	77
102	Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 2008, 372, 230-235.	2.1	27
103	Human Hematopoietic Cell Culture, Transduction, and Analyses. Current Protocols in Human Genetics, 2008, 56, Unit 13.7.	3.5	1
104	In Vivo Biosafety Model to Assess the Risk of Adverse Events From Retroviral and Lentiviral Vectors. Molecular Therapy, 2008, 16, 1308-1315.	8.2	70
105	Hepatocyte-Like Cells Can Be Derived from Human Umbilical Cord Blood and Embryonic Stem Cells: Tested in a Novel Mouse Model. Blood, 2008, 112, 3490-3490.	1.4	0
106	Cytokine and integrin stimulation synergize to promote higher levels of GATA-2, c-myb, and CD34 protein in primary human hematopoietic progenitors from bone marrow. Blood, 2007, 109, 2373-2379.	1.4	26
107	Biology of umbilical cord blood progenitors in bone marrow niches. Blood, 2007, 110, 74-81.	1.4	54
108	¹⁹ F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB Journal, 2007, 21, 1647-1654.	0.5	303

#	Article	IF	CITATIONS
109	Human Progenitor Cells Rapidly Mobilized by AMD3100 Repopulate NOD/SCID Mice with Increased Frequency in Comparison to Cells from the Same Donor Mobilized by Granulocyte Colony Stimulating Factor. Biology of Blood and Marrow Transplantation, 2007, 13, 398-411.	2.0	69
110	In Vivo Distribution of Human Adipose-Derived Mesenchymal Stem Cells in Novel Xenotransplantation Models. Stem Cells, 2007, 25, 220-227.	3.2	157
111	Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID β2mnull mice. Experimental Hematology, 2007, 35, 1823-1838.	0.4	64
112	Ultrasound energy markedly and rapidly effects stem/progenitor cell labeling with nanoparticle beacons for molecular imaging and cell tracking. FASEB Journal, 2007, 21, A379.	0.5	0
113	Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells in a Xenograft Hind Limb Ischemia Injury Model Blood, 2007, 110, 217-217.	1.4	1
114	Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood, 2006, 107, 2162-2169.	1.4	252
115	In Vivo Bioluminescence Imaging (BLI) and Sequential 18F]FHBG microPET Imaging Studies of Human T Cell (huT) Trafficking, Expansion and Xenogeneic Graft-Versus-Host-Disease (XGVHD) Following Different Routes of T Cell Administration Blood, 2006, 108, 5178-5178.	1.4	0
116	Leaky ribosomal scanning in mammalian genomes: significance of histone H4 alternative translation in vivo. Nucleic Acids Research, 2005, 33, 1298-1308.	14.5	31
117	The gold standard improves: a better assay for HSCs. Blood, 2005, 106, 1141-1142.	1.4	1
118	Bone Marrow Mesenchymal Stem Cells Provide an Alternate Pathway of Osteoclast Activation and Bone Destruction by Cancer Cells. Cancer Research, 2005, 65, 1129-1135.	0.9	73
119	Human CD34+Cells Mobilized by AMD3100 Demonstrate Enhanced NOD/SCID Repopulating Function Compared to CD34+ Cells Mobilized by Granulocyte Colony Stimulating Factor Blood, 2005, 106, 1962-1962.	1.4	4
120	Bone Marrow-Derived Aldehyde Dehdrogenase Expressing Cells Possess Endothelial Progenitor Function in Addition to Hematopoietic Repopulating Ability and Aid in Blood Flow Recovery after Acute Ischemic Injury Blood, 2005, 106, 2663-2663.	1.4	2
121	Tracking Differential Repopulation Kinetics of Human Hematopoietic Progenitor Cells Using MRI Detection of Nanoparticles Blood, 2005, 106, 1274-1274.	1.4	0
122	Naive and Ex Vivo Activated Human T Cells Generate Consistent Engraftment and Lethal Graft-Versus-Host Disease (GvHD) in NOD SCID β 2M Null Mice: A New Xenogeneic Model for GvHD Blood, 2005, 106, 3106-3106.	1.4	0
123	Uptake of Protamine Sulphate Complexed Fluorescent Nano-Particles Is Defined by Cell Cycle Status in Primary Human CD34+ Cells: Use of a Multi-Color p27 kip1 Based Flow Cytometric Assay Blood, 2005, 106, 1363-1363.	1.4	0
124	Exploring the Molecular Mechanisms for Enhancing MSC Homing and Lodgement within Sites of Liver Damage/Fibrosis Blood, 2005, 106, 1690-1690.	1.4	0
125	Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood, 2004, 104, 1648-1655.	1.4	318
126	Recent advances in hematopoietic stem cell biology. Current Opinion in Hematology, 2004, 11, 392-398.	2.5	36

#	Article	IF	CITATIONS
127	Isolation of Human CD34- Cells with High Aldehyde Dehydrogenase Activity Reveals a Novel Population with Hematopoietic Repopulating Potential Blood, 2004, 104, 3214-3214.	1.4	9
128	A Pilot Study Evaluating the Safety and Efficacy of AMD3100 for the Mobilization and Transplantation of HLA-Matched Sibling Donor Hematopoietic Stem Cells in Patients with Advanced Hematological Malignancies Blood, 2004, 104, 3341-3341.	1.4	7
129	A Murine Xenograft Model for Human T Cell Mediated Graft Versus Host Disease Blood, 2004, 104, 4977-4977.	1.4	0
130	GMP Scale up for a Clinical Gene Therapy Trial - High Efficiency Human T Cell Expansion and Transduction in a Closed Culture System Utilizing Serumfree Medium and Low IL-2 Concentrations Blood, 2004, 104, 5250-5250.	1.4	0
131	In Vivo Suicide Gene Therapy of Human T Lymphocytes To Prevent Graft Versus Host Disease in a Murine Xenograft Model Blood, 2004, 104, 4979-4979.	1.4	0
132	Transplantation of Human Aldehyde Dehydrogenase Expressing Cells Leads to Widespread Tissue Distribution of Donor Cells in the Novel NOD/SCID/MPSVII Xenotransplantation Model Blood, 2004, 104, 3601-3601.	1.4	0
133	Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nature Medicine, 2003, 9, 463-468.	30.7	134
134	Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation, 2003, 75, 679-685.	1.0	160
135	Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood, 2003, 101, 112-118.	1.4	91
136	Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 2003, 101, 4201-4208.	1.4	241
137	Immune-deficient mouse models for analysis of human stem cells. BioTechniques, 2003, 35, 1262-1272.	1.8	56
138	Retroviral-Mediated Transduction and Clonal Integration Analysis of Human Hematopoietic Stem and Progenitor Cells. , 2002, 63, 253-274.		1
139	Molecular mechanism of transforming growth factor β–mediated cell-cycle modulation in primary human CD34+ progenitors. Blood, 2002, 99, 499-506.	1.4	34
140	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	8.2	140
141	Phenotypic Comparison of Extrathymic Human Bone-Marrow-Derived T Cells with Thymic-Selected T Cells Recovered from Different Tissues. Clinical Immunology, 2001, 100, 339-348.	3.2	4
142	IL-7 Enhances the Responsiveness of Human T Cells That Develop in the Bone Marrow of Athymic Mice. Journal of Immunology, 2001, 166, 170-181.	0.8	30
143	Clinical Infection Control in Gene Therapy: A Multidisciplinary Conference. Infection Control and Hospital Epidemiology, 2000, 21, 659-673.	1.8	5
144	Immunodeficient mice as models of human hematopoietic stem cell engraftment. Current Opinion in Immunology, 1999, 11, 532-537.	5.5	32

#	Article	IF	CITATIONS
145	Cbl functions downstream of Src kinases in FCγRI signaling in primary human macrophages. Journal of Leukocyte Biology, 1999, 65, 523-534.	3.3	22
146	An Increase in the Levels of Retroviral-Mediated Transduction of Engrafting Human Hematopoietic Progenitors Can be Obtained by Manipulation of the Hematopoietic Cell Cycle. , 1999, , 289-297.		0
147	T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nature Medicine, 1998, 4, 775-780.	30.7	321
148	Retroviral Transfer of the Glucocerebrosidase Gene into CD34 ⁺ Cells from Patients with Gaucher Disease: <i>In Vivo</i> Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640.	2.7	144
149	Retroviral Transfer of the Glucocerebrosidase Gene into CD34+ Cells from Patients with Gaucher Disease: In Vivo Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640.	2.7	112
150	Engraftment and Retroviral Marking of CD34+ and CD34+CD38â^' Human Hematopoietic Progenitors Assessed in Immune-Deficient Mice. Blood, 1998, 91, 1243-1255.	1.4	84
151	Haematopoietic stem cells for gene therapy. , 1997, , 447-462.		5
152	Human Hematopoietic Cell Culture, Transduction, and Analyses. Current Protocols in Human Genetics, 1997, 14, 13.7.1.	3.5	0
153	FLT3 Ligand Preserves the Ability of Human CD34+ Progenitors to Sustain Long-Term Hematopoiesis in Immune-Deficient Mice After Ex Vivo Retroviral-Mediated Transduction. Blood, 1997, 89, 446-456.	1.4	157
154	Longâ€Term Cytokine Production from Engineered Primary Human Stromal Cells Influences Human Hematopoiesis in an In Vivo Xenograft Model. Stem Cells, 1997, 15, 443-454.	3.2	60
155	Engraftment of gene–modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Medicine, 1995, 1, 1017-1023.	30.7	616
156	Toward Gene Therapy for Gaucher Disease. Human Gene Therapy, 1991, 2, 101-105.	2.7	47
157	Comparison of the Effects of Growth Factors on Retroviral Vector-Mediated Gene Transfer and the Proliferative Status of Human Hematopoietic Progenitor Cells. Human Gene Therapy, 1990, 1, 257-268.	2.7	131
158	HDACs regulate the differentiation of endothelial cells from human iPSCs. Cell Biochemistry and Function, 0, , .	2.9	0