Sergei M Mirkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372518/publications.pdf

Version: 2024-02-01

44069 43889 8,833 101 48 91 citations h-index g-index papers 111 111 111 6359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characteristics and possible mechanisms of formation of microinversions distinguishing human and chimpanzee genomes. Scientific Reports, 2022, 12, 591.	3.3	О
2	Fleeing Russian researchers seek Western support. Nature, 2022, 606, 463-463.	27.8	0
3	Partners in crime: Tbf1 and Vid22 promote expansions of long human telomeric repeats at an interstitial chromosome position in yeast. , 2022, 1 , .		3
4	Replication-independent instability of Friedreich $\hat{a}\in^{\mathbb{M}}$ s ataxia GAA repeats during chronological aging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
5	Rad9-mediated checkpoint activation is responsible for elevated expansions of GAA repeats in CST-deficient yeast. Genetics, 2021, 219, .	2.9	4
6	Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1628-1637.	7.1	27
7	On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. Journal of Biological Chemistry, 2020, 295, 4134-4170.	3.4	178
8	Experimental System to Study Instability of (CGG)n Repeats in Cultured Mammalian Cells. Methods in Molecular Biology, 2020, 2056, 137-150.	0.9	2
9	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	3.2	47
10	At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes, 2019, 10, 118.	2.4	68
11	Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Research, 2019, 47, 794-805.	14.5	29
12	RNA–DNA hybrids promote the expansion of Friedreich's ataxiaÂ(GAA)n repeats via break-induced replication. Nucleic Acids Research, 2018, 46, 3487-3497.	14.5	62
13	Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends in Genetics, 2018, 34, 448-465.	6.7	25
14	Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System. Methods in Molecular Biology, 2018, 1672, 421-438.	0.9	44
15	Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nature Structural and Molecular Biology, 2018, 25, 669-676.	8.2	33
16	Genetic Control of Genomic Alterations Induced in Yeast by Interstitial Telomeric Sequences. Genetics, 2018, 209, 425-438.	2.9	21
17	The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nature Structural and Molecular Biology, 2017, 24, 55-60.	8.2	70
18	A Defective mRNA Cleavage and Polyadenylation Complex Facilitates Expansions of Transcribed (GAA)n Repeats Associated with Friedreich's Ataxia. Cell Reports, 2017, 20, 2490-2500.	6.4	17

#	Article	lF	CITATIONS
19	Precarious maintenance of simple DNA repeats in eukaryotes. BioEssays, 2017, 39, 1700077.	2.5	33
20	Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Research, 2017, 27, 2072-2082.	5.5	36
21	Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability. Nature Communications, 2017, 8, 15855.	12.8	81
22	Expansion of Interstitial Telomeric Sequences in Yeast. Cell Reports, 2015, 13, 1545-1551.	6.4	21
23	Putting the Brakes on Huntington Disease in a Mouse Experimental Model. PLoS Genetics, 2015, 11, e1005409.	3.5	1
24	The hidden side of unstable DNA repeats: Mutagenesis at a distance. DNA Repair, 2015, 32, 106-112.	2.8	30
25	Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Research, 2015, 43, 6994-7004.	14.5	28
26	Coupling Transcriptional State to Large-Scale Repeat Expansions in Yeast. Cell Reports, 2014, 9, 1594-1602.	6.4	17
27	Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nature Biotechnology, 2014, 32, 71-75.	17.5	120
28	To Switch or Not to Switch: At the Origin of Repeat Expansion Disease. Molecular Cell, 2014, 53, 1-3.	9.7	38
29	DNA Sequences That Interfere with Transcription: Implications for Genome Function and Stability. Chemical Reviews, 2013, 113, 8620-8637.	47.7	96
30	The balancing act of DNA repeat expansions. Current Opinion in Genetics and Development, 2013, 23, 280-288.	3.3	95
31	Genome rearrangements caused by interstitial telomeric sequences in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19866-19871.	7.1	66
32	Driving past four-stranded snags. Nature, 2013, 497, 449-450.	27.8	12
33	Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Research, 2013, 41, 1817-1828.	14.5	57
34	Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Research, 2012, 40, 3964-3974.	14.5	37
35	Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Research, 2012, 40, 1091-1105.	14.5	76
36	Role of DNA Polymerases in Repeat-Mediated Genome Instability. Cell Reports, 2012, 2, 1088-1095.	6.4	61

#	Article	lF	Citations
37	Genome-wide Screen Identifies Pathways that Govern GAA/TTC Repeat Fragility and Expansions in Dividing and Nondividing Yeast Cells. Molecular Cell, 2012, 48, 254-265.	9.7	58
38	A Renaissance Man: In Memoriam of Jon Widom (1955–2011). Journal of Biomolecular Structure and Dynamics, 2011, 29, 253-255.	3.5	0
39	Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2843-2848.	7.1	47
40	Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae. PLoS Genetics, 2011, 7, e1001270.	3 . 5	36
41	Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12816-12821.	7.1	136
42	Getting to the Core of Repeat Expansions by Cell Reprogramming. Cell Stem Cell, 2010, 7, 545-546.	11.1	3
43	Checkpoint responses to unusual structures formed by DNA repeats. Molecular Carcinogenesis, 2009, 48, 309-318.	2.7	45
44	Human mutation rate associated with DNA replication timing. Nature Genetics, 2009, 41, 393-395.	21.4	371
45	Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nature Structural and Molecular Biology, 2009, 16, 226-228.	8.2	118
46	Large-Scale Expansions of Friedreich's Ataxia GAA Repeats in Yeast. Molecular Cell, 2009, 35, 82-92.	9.7	126
47	Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO Journal, 2008, 27, 2896-2906.	7.8	98
48	Discovery of alternative DNA structures: a heroic decade (1979-1989). Frontiers in Bioscience - Landmark, 2008, 13, 1064.	3.0	107
49	A Tribute to Evgenii V. Ananiev, 1947–2008. PLoS Genetics, 2008, 4, e1000122.	3.5	2
50	Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9936-9941.	7.1	235
51	Effects of Friedreich's ataxia (GAA)n{middle dot}(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Research, 2007, 35, 1075-1084.	14.5	49
52	REPLICATION OF DNA PALINDROMES AND CHROMOSOMAL INSTABILITY Journal of Investigative Medicine, 2007, 55, S359.	1.6	1
53	Replication Fork Stalling at Natural Impediments. Microbiology and Molecular Biology Reviews, 2007, 71, 13-35.	6.6	433
54	Expandable DNA repeats and human disease. Nature, 2007, 447, 932-940.	27.8	834

#	Article	IF	Citations
55	DNA structures, repeat expansions and human hereditary disorders. Current Opinion in Structural Biology, 2006, 16, 351-358.	5 . 7	211
56	Transcription regulatory elements are punctuation marks for DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7276-7281.	7.1	62
57	Replication of Expandable DNA Repeats. , 2006, , 637-644.		1
58	Toward a unified theory for repeat expansions. Nature Structural and Molecular Biology, 2005, 12, 635-637.	8.2	21
59	Mechanisms of Transcription-Replication Collisions in Bacteria. Molecular and Cellular Biology, 2005, 25, 888-895.	2.3	154
60	Replication Stalling at Friedreich's Ataxia (GAA) <i></i> Repeats In Vivo. Molecular and Cellular Biology, 2004, 24, 2286-2295.	2.3	193
61	Analysis of Triplet Repeat Replication by Two-Dimensional Gel Electrophoresis. , 2004, 277, 019-028.		20
62	Schizosaccharomyces pombe Ddb1 Is functionally Linked to the Replication Checkpoint Pathway. Journal of Biological Chemistry, 2003, 278, 37006-37014.	3.4	15
63	Replication and Expansion of Trinucleotide Repeats in Yeast. Molecular and Cellular Biology, 2003, 23, 1349-1357.	2.3	152
64	Positioned to expand. Nature Genetics, 2002, 31, 5-6.	21.4	42
65	Thinking of R.B. Khesin. Molecular Biology, 2002, 36, 267-279.	1.3	0
66	A new trick for an old dog: TraY binding to a homopurine-homopyrimidine run attenuates DNA replication. Journal of Molecular Biology, 2001, 313, 271-282.	4.2	9
67	Expansion of Trinucleotide Repeats. Molecular Biology, 2001, 35, 168-182.	1.3	16
68	Expansion of the (CTG)n repeat in the 5'-UTR of a reporter gene impedes translation. Nucleic Acids Research, 2000, 28, 3943-3949.	14.5	30
69	138. Studies of molecular mechanisms regulating reelin gene expression. Biological Psychiatry, 2000, 47, S41-S42.	1.3	1
70	Structure and Biology of H DNA. Perspectives in Antisense Science, 1999, , 193-222.	0.2	4
71	Large-scale effects of transcriptional DNA supercoiling in Vivo 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 292, 1149-1160.	4.2	83
72	Transcription through a simple DNA repeat blocks replication elongation. EMBO Journal, 1998, 17, 5095-5102.	7.8	78

#	Article	lF	CITATIONS
73	Mechanisms of triplex-caused polymerization arrest. Nucleic Acids Research, 1997, 25, 1339-1346.	14.5	63
74	Characteristic enrichment of DNA repeats in different genomes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5237-5242.	7.1	117
75	Trinucleotide repeats affect DNA replication in vivo. Nature Genetics, 1997, 17, 298-304.	21.4	315
76	Triplex DNA Structures. Annual Review of Biochemistry, 1995, 64, 65-95.	11.1	755
77	Transcriptional activity of the homopurine-homopyrimidine repeat of the c-Ki-raspromoter is independent of its H-forming potential. Nucleic Acids Research, 1994, 22, 3271-3279.	14.5	23
78	H-DNA and Related Structures. Annual Review of Biophysics and Biomolecular Structure, 1994, 23, 541-576.	18.3	253
79	Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides. Gene, 1994, 149, 127-136.	2.2	46
80	Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11406-11410.	7.1	92
81	Transcriptionally driven cruciform formationin vivo. Nucleic Acids Research, 1992, 20, 5991-5997.	14.5	108
82	Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. Journal of Bacteriology, 1991, 173, 2658-2664.	2.2	72
83	H-DNA and Z-DNA in the mouse c-Ki-raspromoter. Nucleic Acids Research, 1991, 19, 6527-6532.	14.5	60
84	Formation of intramolecular triplex in homopurine-homopyrimidine mirror repeats with point substitutions. Nucleic Acids Research, 1990, 18, 6621-6624.	14.5	79
85	Energetics of the B–H transition in supercoiled DNA carrying d(CT)x.d(AG)xand d(C)n.d(G)ninserts. Nucleic Acids Research, 1989, 17, 9417-9423.	14.5	27
86	An unusual DMA structure detected in a telomeric sequence under superhelical stress and at low pH. Nature, 1989, 339, 634-637.	27.8	66
87	Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature, 1988, 333, 475-476.	27.8	186
88	Chemical probing of the homopurineÂ-homopyrimidine tract in supercoiled DNA at single-nucleotide resolution. FEBS Letters, 1988, 234, 295-299.	2.8	48
89	A stable complex between homopyrimidine oligomers and the homologous regions of duplex DNAs. Nucleic Acids Research, 1988, 16, 2165-2187.	14.5	155
90	The Energetics of the B-Z Transition in DNA. Journal of Biomolecular Structure and Dynamics, 1987, 5, 79-88.	3.5	25

#	Article	IF	CITATIONS
91	Structure of (dG)n \hat{A} · (dC)nUnder Superhelical Stress and Acid pH. Journal of Biomolecular Structure and Dynamics, 1987, 5, 275-282.	3.5	43
92	The Ionic Strength Dependence of the Cooperativity Factor for DNA Melting. Journal of Biomolecular Structure and Dynamics, 1987, 5, 119-126.	3.5	27
93	DNA H form requires a homopurine–homopyrimidine mirror repeat. Nature, 1987, 330, 495-497.	27.8	420
94	Structures of Homopurine-homopyrimidine Tract in Superhelical DNA. Journal of Biomolecular Structure and Dynamics, 1986, 3, 667-669.	3.5	213
95	A Structural Transition in d(AT) _{<i>n</i>} \hat{A} ·d(AT) _{<i>n</i>} lnserts within Superhelical DNA. Journal of Biomolecular Structure and Dynamics, 1985, 2, 1221-1234.	3.5	70
96	A pH-dependent Structural Transition in the Homopurine-homopyrimidine Tract in Superhelical DNA. Journal of Biomolecular Structure and Dynamics, 1985, 3, 327-338.	3.5	144
97	The Absence of Cruciform Structures from pA03 Plasmid DNA <i>In vivo</i> Structure and Dynamics, 1984, 2, 291-301.	3.5	24
98	Native supercoiling of DNA: The effects of DNA gyrase and ω protein in E. coli. Molecular Genetics and Genomics, 1984, 196, 508-512.	2.4	12
99	DNA replication and transcription in a temperature-sensitive mutant of E. coli with a defective DNA gyrase B subunit. Molecular Genetics and Genomics, 1982, 188, 91-95.	2.4	21
100	Changed properties of the A subunit in DNA gyrase with a B subunit mutation. Molecular Genetics and Genomics, 1982, 186, 572-574.	2.4	2
101	DNA Supercoiling and transcription in Escherichia coli: Influence of RNA polymerase mutations. Molecular Genetics and Genomics, 1979, 177, 169-175.	2.4	24