List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371380/publications.pdf Version: 2024-02-01

WEI-DONG HE

#	Article	IF	CITATIONS
1	Radiation-induced synthesis of hydrophobic cryogels with rapid and high absorption of organic solvents and oils. Microporous and Mesoporous Materials, 2022, 330, 111486.	4.4	13
2	PAAO cryogels from amidoximated P(acrylic acid-co-acrylonitrile) for the adsorption of lead ion. European Polymer Journal, 2022, 171, 111192.	5.4	13
3	A versatile platform of poly(acrylic acid) cryogel for highly efficient photothermal water evaporation. Materials Advances, 2021, 2, 3088-3098.	5.4	16
4	Highly porous cryogels loaded with bimetallic nanoparticles as an efficient antimicrobial agent and catalyst for rapid reduction of water-soluble organic contaminants. Journal of Environmental Chemical Engineering, 2021, 9, 106510.	6.7	21
5	Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy, 2020, 68, 104294.	16.0	47
6	Degradable and cationic long-subchain hyperbranched block copolymers with well-defined block subchain: Synthesis, characterization and degradation. European Polymer Journal, 2020, 136, 109907.	5.4	0
7	Rapid UV-radiation synthesis of polyacrylate cryogel oil-sorbents with adaptable structure and performance. Environmental Research, 2020, 187, 109488.	7.5	17
8	Highly porous and thermally stable tribopositive hybrid bimetallic cryogel to boost up the performance of triboelectric nanogenerators. International Journal of Energy Research, 2020, 44, 8442-8454.	4.5	22
9	Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer, 2020, 193, 122352.	3.8	24
10	Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum(iv) prodrugs for improved intracellular delivery and cytosolic reductive-triggered release. Polymer Chemistry, 2020, 11, 2212-2221.	3.9	7
11	Kinetically controlled cyclization in step-growth polymerization of AB2 macromonomer: Role of molar mass of macromonomer. Polymer, 2020, 195, 122446.	3.8	5
12	Realizing the Capability of Negatively Charged Graphene Oxide in the Presence of Conducting Polyaniline for Performance Enhancement of Tribopositive Material of Triboelectric Nanogenerator. Advanced Electronic Materials, 2020, 6, 2000034.	5.1	21
13	Mushroom-Like rGO/PAM Hybrid Cryogels with Efficient Solar-Heating Water Evaporation. ACS Applied Energy Materials, 2019, 2, 7554-7563.	5.1	52
14	Macroporous Oil-Sorbents with a High Absorption Capacity and High-Temperature Tolerance Prepared through Cryo-Polymerization. Polymers, 2019, 11, 1620.	4.5	19
15	How the Crosslinking Agent Influences the Thermal Stability of RTV Phenyl Silicone Rubber. Materials, 2019, 12, 88.	2.9	24
16	Selfâ€assembly behavior of amphiphilic linearâ€blockâ€dendritic copolymers with long subchains: Dependences on dendron generation and mixing dynamics. Journal of Polymer Science Part A, 2018, 56, 1446-1456.	2.3	3
17	Novel fluorescent hyperbranched aliphatic polyestertriazole as efficient probe for detecting Hg2+ in water. Reactive and Functional Polymers, 2018, 126, 87-94.	4.1	5
18	Ring-opening cryo-polymerization of N-carboxy-α-amino acid anhydride of γ-benzyl l-Glutamate. Polymer, 2018, 151, 1-5.	3.8	5

#	Article	IF	CITATIONS
19	Gold Nanoparticles Grafted with PLL-b-PNIPAM: Interplay on Thermal/pH Dual-Response and Optical Properties. Molecules, 2018, 23, 921.	3.8	10
20	Fabricating ternary hydrogels of P(AM-co-DMAEMA)/PVA/ β -CD based on multiple physical crosslinkage. Polymer, 2017, 119, 152-159.	3.8	24
21	Long-subchain Janus-dendritic copolymers from locally confined click reaction and generation-dependent micro-phase separation. Polymer Chemistry, 2017, 8, 3889-3900.	3.9	4
22	Comb-Type Grafted Hydrogels of PNIPAM and PDMAEMA with Reversed Network-Graft Architectures from Controlled Radical Polymerizations. Polymers, 2016, 8, 38.	4.5	13
23	Long-subchain hyperbranched poly(aminoethyl acrylate): A potent antimicrobial polymer with low hemolytic toxicity. Journal of Polymer Science Part A, 2016, 54, 3462-3469.	2.3	10
24	Formation of long sub-chain hyperbranched poly(methyl methacrylate) based on inhibited self-cyclization of seesaw macromonomers. Polymer Chemistry, 2016, 7, 4842-4851.	3.9	18
25	Janus long-chain hyperbranched copolymers of PSt and POEGMA from a self-assembly mediated click reaction. Polymer Chemistry, 2016, 7, 2476-2485.	3.9	11
26	Bactericidal Dendritic Polycation Cloaked with Stealth Material via Lipase-Sensitive Intersegment Acquires Neutral Surface Charge without Losing Membrane-Disruptive Activity. ACS Applied Materials & Interfaces, 2015, 7, 27602-27607.	8.0	20
27	Formation of Hyperbranched Amphiphilic Terpolymers and Unimolecular Micelles in One-Pot Copolymerization. Macromolecules, 2015, 48, 7327-7334.	4.8	8
28	Efficient and economical synthesis of dendrimer-like polystyrene with long subchains through arm-first divergent strategy. Polymer Chemistry, 2014, 5, 4649-4657.	3.9	6
29	Association, emulsifying, and solubilization properties of amphiphilic hyperbranched poly(acrylic) Tj ETQq1 1 0.	784314 rg	BT / <u>5</u> verlock
30	Hollow mesoporous silica nanoparticles modified with coumarinâ€containing copolymer for photoâ€modulated loading and releasing guest molecule. Journal of Polymer Science Part A, 2013, 51, 3791-3799.	2.3	12
31	Click cyclization of linear triblock copolymers at block junctions under high concentration due to end-block shielding. Chinese Journal of Polymer Science (English Edition), 2013, 31, 959-965.	3.8	1
32	Solvent replacement to thermoâ€responsive nanoparticles from longâ€subchain hyperbranched PSt grafted with PNIPAM for encapsulation. Journal of Polymer Science Part A, 2013, 51, 2142-2149.	2.3	10
33	How Does a Hyperbranched Chain Pass through a Nanopore?. Macromolecules, 2012, 45, 7583-7589.	4.8	37
34	Temperature-Responsive Smart Nanoreactors: Poly(<i>N</i> -isopropylacrylamide)-Coated Au@Mesoporous-SiO ₂ Hollow Nanospheres. Langmuir, 2012, 28, 13452-13458.	3.5	84
35	Controlling the formation of longâ€subchain hyperbranched polystyrene from seesawâ€type AB ₂ macromonomers: Solvent polarity and solubility. Journal of Polymer Science Part A, 2012, 50, 3214-3224.	2.3	23
36	Synthesis of longâ€subchain hyperbranched PCL through SCVâ€ATRP of macroinimers with (meth)acrlate group. Journal of Polymer Science Part A, 2012, 50, 3475-3480.	2.3	5

#	Article	IF	CITATIONS
37	Multiple Morphologies of PAA- <i>b</i> -PSt Assemblies throughout RAFT Dispersion Polymerization of Styrene with PAA Macro-CTA. Macromolecules, 2011, 44, 3358-3365.	4.8	213
38	"Click―Long Seesaw-Type Aâ^1⁄4â^1⁄4Bâ^1⁄4â^1⁄4A Chains Together into Huge Defect-Free Hyperbranched Polym with Uniform Subchains. Macromolecules, 2011, 44, 6233-6236.	er Chains 4.8	60
39	Formation Kinetics and Scaling of "Defect-Free―Hyperbranched Polystyrene Chains with Uniform Subchains Prepared from Seesaw-Type Macromonomers. Macromolecules, 2011, 44, 8195-8206.	4.8	81
40	Dual thermo―and pHâ€sensitive networkâ€grafted hydrogels formed by macrocrosslinker as drug delivery system. Journal of Polymer Science Part A, 2011, 49, 2155-2164.	2.3	20
41	Zwitterionic shellâ€crosslinked micelles from blockâ€comb copolymer of P <i>t</i> BAâ€ <i>b</i> â€P(PEGMEMAâ€ <i>co</i> â€DMAEMA). Journal of Polymer Science Part A, 2011, 49, 2783-2789.	2.3	12
42	RAFT cryopolymerizations of acrylamides and acrylates in dioxane at â^3°C. Polymer, 2010, 51, 110-114.	3.8	22
43	Preparation of block-brush PEG-b-P(NIPAM-g-DMAEMA) and its dual stimulus-response. Polymer, 2010, 51, 3039-3046.	3.8	58
44	Reducibly degradable hydrogels of PNIPAM and PDMAEMA: Synthesis, stimulusâ€response and drug release. Journal of Polymer Science Part A, 2010, 48, 3604-3612.	2.3	36
45	Thermal and pHâ€sensitive gold nanoparticles from Hâ€shaped block copolymers of (PNIPAM/PDMAEMA)â€ <i>b</i> â€PEGâ€ <i>b</i> â€(PNIPAM/PDMAEMA). Journal of Polymer Science Part A, 2010, 5018-5029.	4 83	42
46	Interchain Hydrogen-Bonding-Induced Association of Poly(acrylic acid)- <i>graft</i> -poly(ethylene) Tj ETQq0 0 0 rgl	3T /Overlo 4.8	ck 10 Tf 50
47	Shell-Cross-Linked Micelles from PNIPAM- <i>b</i> -(PLL) ₂ Y-Shaped Miktoarm Star Copolymer as Drug Carriers. Biomacromolecules, 2010, 11, 1882-1890.	5.4	59
48	A chemistry/physics pathway with nanofibrous scaffolds for gene delivery. Physical Chemistry Chemical Physics, 2010, 12, 12379.	2.8	6
49	THE ASSOCIATION OF LIVING POLYSTYRYLLITHIUM IN BENZENE. Chinese Journal of Polymer Science (English Edition), 2009, 27, 407.	3.8	1
50	Reduced matrix viscosity in DNA sequencing by CE and microchip electrophoresis using a novel thermoâ€responsive copolymer. Electrophoresis, 2009, 30, 2488-2498.	2.4	7
51	Synthesis and micellization of PStâ€PNIPAMâ€PDMAEMA heteroâ€arm star polymer with double thermoâ€responsibility. Journal of Polymer Science Part A, 2009, 47, 786-796.	2.3	43
52	Synthesis of PEGâ€PNIPAMâ€PLys heteroâ€arm star polymer and its variation of thermoâ€responsibility after the formation of polyelectrolyte complex micelles with PAA. Journal of Polymer Science Part A, 2009, 47, 1450-1462.	2.3	40
53	Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: Synthesis, properties, and <i>in vitro</i> release. Journal of Polymer Science Part A, 2009, 47, 4074-4082.	2.3	53

54RAFT cryopolymerizations of <i>N,N</i>â<dimethylacrylamide and <i>N</i>â<disopropylacrylamide in
moderately frozen aqueous solution. Journal of Polymer Science Part A, 2009, 47, 6863-6872.2.324

WEI-DONG HE

#	Article	IF	CITATIONS
55	Synthesis of twinâ€ŧail tadpoleâ€shaped hydrophilic copolymers and their thermoâ€ŧesponsive behavior. Journal of Polymer Science Part A, 2009, 47, 7066-7077.	2.3	25
56	pH-Responsive Self-assembled Nanoparticles of Simulated P(AA-co-SA)-g-PEG for Drug Release. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 886-891.	2.2	3
57	ATRP OF STYRENE INITIATED BY 3-CHLORO-2-(CHLOROMETHYL)-1-PROPENE. Acta Polymerica Sinica, 2009, 007, 582-584.	0.0	Ο
58	Preparation of polypyrroleâ€ <i>graft</i> â€poly(<i>N</i> â€isopropylacrylamide)/silver nanocomposites from pyrrolylâ€capped macromonomer by AgNO ₃ and their stimuli responsibility of light emission. Journal of Polymer Science Part A, 2008, 46, 6950-6960.	2.3	17
59	Synthesis, morphology, component distribution, and mechanical properties of nitrocellulose/gradient poly(ethylene glycol dimethacrylate) semi-IPN material. Journal of Applied Polymer Science, 2007, 105, 510-514.	2.6	13
60	Preparation of multi-walled carbon nanotubes grafted with synthetic poly(l-lysine) through surface-initiated ring-opening polymerization. Polymer, 2007, 48, 4352-4360.	3.8	37
61	Preparation of poly(styreneâ€ <i>b</i> â€ <i>N</i> â€isopropylacrylamide) micelles surfaceâ€linked with gold nanoparticles and thermoâ€responsive ultraviolet–visible absorbance. Journal of Polymer Science Part A, 2007, 45, 5156-5163.	2.3	36
62	Silver nanorods using HEC as a template by γ-irradiation technique and absorption dose that changed their nanosize and morphology. Materials Letters, 2007, 61, 1801-1804.	2.6	8
63	Novel one-step route for synthesizing sub-micrometer PSt hollow spheres via redox interfacial-initiated method in inversed emulsion. Materials Letters, 2007, 61, 2818-2821.	2.6	7
64	Reversible thermo-responsive sieving matrix for oligonucleotide separation. Lab on A Chip, 2006, 6, 526.	6.0	25
65	In-Situ X-ray Deformation Study of Fluorinated Multiwalled Carbon Nanotube and Fluorinated Ethyleneâ^ Propylene Nanocomposite Fibers. Macromolecules, 2006, 39, 5427-5437.	4.8	40
66	Interfacial-initiated seeded emulsion polymerization: preparation of polystyrene/poly(methacrylic) Tj ETQq0 0 0 r	gBŢ /Over 3.1	lock 10 Tf 50
67	Designing polymer matrix for microchip-based double-stranded DNA capillary electrophoresis. Journal of Chromatography A, 2006, 1117, 219-227.	3.7	8
68	Novel method for the preparation of core–shell nanoparticles with movable Ag core and polystyrene loop shell. Journal of Solid State Chemistry, 2006, 179, 1253-1258.	2.9	17
69	Fabrication of CdS nanorods in inverse microemulsion using HEC as a template by a convenient Î ³ -irradiation technique. Journal of Crystal Growth, 2006, 290, 592-596.	1.5	17
70	Magnetic properties of polystyrene-b-poly(2-hydroxylethyl methacrylate)/metal hybrids. Journal of Applied Polymer Science, 2006, 99, 2314-2319.	2.6	2
71	Interfacially initiated microemulsion copolymerization: One-stage preparation of poly(n-butyl) Tj ETQq1 1 0.7843 Science, 2006, 101, 3751-3757.	14 rgBT / 2.6	Overlock 10 0
72	Scale-up development of high-performance polymer matrix for DNA sequencing analysis. Electrophoresis, 2006, 27, 3712-3723.	2.4	6

#	Article	IF	CITATIONS
73	Novel One-Step Route for Preparing Amphiphilic Block Copolymers of Styrene andN-Isopropylacrylamide in a Microemulsion. Macromolecular Rapid Communications, 2006, 27, 1229-1232.	3.9	16
74	New approach to hybrid materials: Functional sub-micrometer core/shell particles coated with NiS clusters by Î ³ -irradiation. Polymer, 2005, 46, 8366-8372.	3.8	13
75	Multiple morphological micelles formed from the self-assembly of poly(styrene)-b-poly(4-vinylpyridine) containing cobalt dodecyl benzene sulfonate. European Polymer Journal, 2005, 41, 2088-2096.	5.4	13
76	Fast separation of single-stranded oligonucleotides by capillary electrophoresis using OliGreen® as fluorescence inducing agent. Electrophoresis, 2005, 26, 4449-4455.	2.4	16
77	Preparation and characterization of core–shell polystyrene–polydimethylsiloxane particles by seeded polymerization. Polymer International, 2004, 53, 1033-1039.	3.1	17
78	Preparation of narrowly distributed nanoparticles of poly(n-butyl methacrylate-co-vinyl pyrrolidone) through microemulsion polymerization. Journal of Applied Polymer Science, 2004, 92, 2334-2340.	2.6	6
79	Synthesis and characterization of submicron PMMA particles containing rare earth ions on the surface. Journal of Applied Polymer Science, 2003, 89, 1124-1131.	2.6	21
80	Synthesis of poly(4-vinylpyridine) and block copoly (4-vinylpyridine–b-styrene) by atom transfer radical polymerization using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligand. European Polymer Journal, 2003, 39, 2029-2033.	5.4	33
81	Study on controlled radical alternating copolymerization of styrene with maleic anhydride under UV irradiation. Polymer International, 2003, 52, 98-103.	3.1	37
82	FORMATION OF MONODISPERSE POLYACRYLAMIDE PARTICLES BY DISPERSION POLYMERIZATION. I. SYNTHESIS AND POLYMERIZATION KINETICS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 545-556.	2.2	7
83	Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization. I. Synthesis and polymerization kinetics. Journal of Applied Polymer Science, 2002, 86, 2567-2573.	2.6	17
84	Formation of Monodisperse Polyacrylamide Particles by Radiation-Induced Dispersion Polymerization: Particle Size and Size Distribution. Journal of Colloid and Interface Science, 2002, 253, 279-284.	9.4	62
85	Amphiphilic particles prepared by grafting acrylamide onto the surface of styrene-rich copolymer/2-hydroxyethyl acrylate rich copolymer particles. Colloid and Polymer Science, 2002, 280, 865-872.	2.1	4
86	Anionic synthesis of telechelic polyacetylene. Synthetic Metals, 2001, 122, 263-266.	3.9	6
87	Soapless emulsion polymerization of butyl methacrylate through microwave heating. Journal of Applied Polymer Science, 2001, 80, 2455-2459.	2.6	32
88	Influence of reaction between second monomer and vinyl group of seed polysiloxane on seeded emulsion polymerization. Journal of Applied Polymer Science, 2001, 80, 2752-2758.	2.6	26
89	Influence of crosslinking degree of silicone rubber particles on properties of epoxy resin. Journal of Applied Polymer Science, 1998, 69, 619-625.	2.6	5
90	Evaluation of membranes of copolypeptide of Î ³ -benzyl l-glutamate and l-glutamic acid for the permeability of anticancer drugs. Journal of Membrane Science, 1997, 130, 17-21.	8.2	1

#	Article	IF	CITATIONS
91	Study of the Preparation of Silicone Rubber Particles with Core-Shell Structure by Seeded Emulsion Polymerization. Polymer International, 1996, 39, 31-36.	3.1	31
92	Formation mechanism of silicone rubber particles with core-shell structure by seeded emulsion polymerization. Journal of Applied Polymer Science, 1996, 61, 383-388.	2.6	49
93	Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	4