
Nancy Forger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology, 2022, 112, 636-648.	2.5	7
2	Birth triggers an inflammatory response in the neonatal periphery and brain. Brain, Behavior, and Immunity, 2022, , .	4.1	5
3	First Encounters: Effects of the Microbiota on Neonatal Brain Development. Frontiers in Cellular Neuroscience, 2021, 15, 682505.	3.7	13
4	Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death. Scientific Reports, 2021, 11, 2335.	3.3	18
5	Adult Neural Plasticity in Naked Mole-Rats: Implications of Fossoriality, Longevity and Sociality on the Brain's Capacity for Change. Advances in Experimental Medicine and Biology, 2021, 1319, 105-135.	1.6	5
6	Cesarean birth elicits long-term effects on vasopressin and oxytocin neurons in the hypothalamic paraventricular nucleus of mice. Hormones and Behavior, 2021, 136, 105080.	2.1	3
7	Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain. Epigenetics, 2020, 15, 72-84.	2.7	40
8	Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology, 2020, 161, .	2.8	21
9	Does Birth Trigger Cell Death in the Developing Brain?. ENeuro, 2020, 7, ENEURO.0517-19.2020.	1.9	9
10	Microglial Depletion Causes Region‣pecific Changes to Developmental Neuronal Cell Death in the Mouse Brain. Developmental Neurobiology, 2019, 79, 769-779.	3.0	10
11	Does Gender Leave an Epigenetic Imprint on the Brain?. Frontiers in Neuroscience, 2019, 13, 173.	2.8	33
12	Effects of sex and prenatal androgen manipulations on Onuf's nucleus of rhesus macaques. Hormones and Behavior, 2018, 100, 39-46.	2.1	3
13	Past, present and future of epigenetics in brain sexual differentiation. Journal of Neuroendocrinology, 2018, 30, e12492.	2.6	25
14	The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain, Behavior, and Immunity, 2018, 67, 218-229.	4.1	54
15	Birth delivery mode alters perinatal cell death in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11826-11831.	7.1	49
16	Patterns of cell death in the perinatal mouse forebrain. Journal of Comparative Neurology, 2017, 525, 47-64.	1.6	37
17	Neonatal Inhibition of DNA Methylation Alters Cell Phenotype in Sexually Dimorphic Regions of the Mouse Brain. Endocrinology, 2017, 158, 1838-1848.	2.8	36
18	Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Developmental Neurobiology, 2017, 77, 753-766.	3.0	22

#	Article	IF	CITATIONS
19	Sexual Differentiation of the Brain: A Fresh Look at Mode, Mechanisms, and Meaning. , 2017, , 3-32.		21
20	Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Frontiers in Neuroendocrinology, 2016, 40, 67-86.	5.2	61
21	Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150114.	4.0	63
22	Sex differences in the brain: a whole body perspective. Biology of Sex Differences, 2015, 6, 15.	4.1	106
23	Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Experimental Neurology, 2015, 268, 21-29.	4.1	73
24	Sexual Differentiation of Brain and Behavior. , 2015, , 2109-2155.		3
25	The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biology of Sex Differences, 2014, 5, 8.	4.1	106
26	Socially regulated reproductive development: Analysis of GnRHâ€1 and kisspeptin neuronal systems in cooperatively breeding naked moleâ€rats (<i>Heterocephalus glaber</i>). Journal of Comparative Neurology, 2013, 521, 3003-3029.	1.6	30
27	Differential Control of Sex Differences in Estrogen Receptor α in the Bed Nucleus of the Stria Terminalis and Anteroventral Periventricular Nucleus. Endocrinology, 2013, 154, 3836-3846.	2.8	38
28	Androgen receptor distribution in the social decision-making network of eusocial naked mole-rats. Behavioural Brain Research, 2013, 256, 214-218.	2.2	10
29	Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: Effects of age and sex. Journal of Comparative Neurology, 2013, 521, 2551-2569.	1.6	58
30	Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis. Biology of Sex Differences, 2012, 3, 5.	4.1	59
31	Social and hormonal triggers of neural plasticity in naked mole-rats. Behavioural Brain Research, 2011, 218, 234-239.	2.2	20
32	Effects of <i>Bax</i> gene deletion on social behaviors and neural response to olfactory cues in mice. European Journal of Neuroscience, 2011, 34, 1492-1499.	2.6	25
33	Effects of Neonatal Treatment with Valproic Acid on Vasopressin Immunoreactivity and Olfactory Behaviour in Mice. Journal of Neuroendocrinology, 2011, 23, 906-914.	2.6	27
34	Social Status and Sex Effects on Neural Morphology in Damaraland Mole-Rats, <i>Fukomys damarensis</i> . Brain, Behavior and Evolution, 2011, 77, 291-298.	1.7	15
35	Cell death and sexual differentiation of behavior: worms, flies, and mammals. Current Opinion in Neurobiology, 2010, 20, 776-783.	4.2	13
36	Control of Cell Number in the Bed Nucleus of the Stria Terminalis of Mice: Role of Testosterone Metabolites and Estrogen Receptor Subtypes. Journal of Sexual Medicine, 2010, 7, 1401-1409.	0.6	70

#	Article	IF	CITATIONS
37	BAX-Dependent and BAX-Independent Regulation of Kiss1 Neuron Development in Mice. Endocrinology, 2010, 151, 5807-5817.	2.8	91
38	Social Structure Predicts Genital Morphology in African Mole-Rats. PLoS ONE, 2009, 4, e7477.	2.5	30
39	Epigenetic Control of Sexual Differentiation of the Bed Nucleus of the Stria Terminalis. Endocrinology, 2009, 150, 4241-4247.	2.8	154
40	Neuroendocrinology and sexual differentiation in eusocial mammals. Frontiers in Neuroendocrinology, 2009, 30, 519-533.	5.2	67
41	Control of Cell Number in the Sexually Dimorphic Brain and Spinal Cord. Journal of Neuroendocrinology, 2009, 21, 393-399.	2.6	86
42	Sex differences in NeuN- and androgen receptor–positive cells in the bed nucleus of the stria terminalis are due to Bax-dependent cell death. Neuroscience, 2009, 158, 1251-1256.	2.3	19
43	The organizational hypothesis and final common pathways: Sexual differentiation of the spinal cord and peripheral nervous system. Hormones and Behavior, 2009, 55, 605-610.	2.1	29
44	The Epigenetics of Sex Differences in the Brain: Figure 1 Journal of Neuroscience, 2009, 29, 12815-12823.	3.6	389
45	The role of cell death in sexually dimorphic muscle development: Maleâ€specific muscles are retained in female <i>bax</i> / <i>bak</i> knockout mice. Developmental Neurobiology, 2008, 68, 1303-1314.	3.0	14
46	Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience, 2008, 155, 809-817.	2.3	74
47	The spinal nucleus of the bulbocavernosus: Firsts in androgen-dependent neural sex differences. Hormones and Behavior, 2008, 53, 596-612.	2.1	91
48	Social status and sex independently influence androgen receptor expression in the eusocial naked mole-rat brain. Hormones and Behavior, 2008, 54, 278-285.	2.1	48
49	Sexual Differentiation of Vasopressin Innervation of the Brain: Cell Death Versus Phenotypic Differentiation. Endocrinology, 2008, 149, 4632-4637.	2.8	33
50	Social control of brain morphology in a eusocial mammal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10548-10552.	7.1	80
51	Development of sex differences in the principal nucleus of the bed nucleus of the stria terminalis of mice: Role of <i>Bax</i> â€dependent cell death. Developmental Neurobiology, 2007, 67, 355-362.	3.0	58
52	Deletion of theBax gene disrupts sexual behavior and modestly impairs motor function in mice. Developmental Neurobiology, 2007, 67, 1511-1519.	3.0	33
53	Distribution of vasopressin in the brain of the eusocial naked moleâ€rat. Journal of Comparative Neurology, 2007, 500, 1093-1105.	1.6	45
54	Influence of gonadal sex hormones on behavioral components of the reproductive hierarchy in naked mole-rats. Hormones and Behavior, 2006, 50, 77-84.	2.1	23

#	Article	IF	CITATIONS
55	Cell death and sexual differentiation of the nervous system. Neuroscience, 2006, 138, 929-938.	2.3	141
56	Breeding status affects motoneuron number and muscle size in naked moleâ€rats: Recruitment of perineal motoneurons?. Journal of Neurobiology, 2006, 66, 1354-1364.	3.6	32
57	Distribution of vasopressin in the forebrain of spotted hyenas. Journal of Comparative Neurology, 2006, 498, 80-92.	1.6	26
58	Effects of Bax Gene Deletion on Muscle and Motoneuron Degeneration in a Sexually Dimorphic Neuromuscular System. Journal of Neuroscience, 2005, 25, 5638-5644.	3.6	41
59	Deletion of <i>Bax</i> eliminates sex differences in the mouse forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13666-13671.	7.1	200
60	Cardiotrophin-Like Cytokine/Cytokine-Like Factor 1 is an Essential Trophic Factor for Lumbar and Facial Motoneurons <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 8854-8858.	3.6	74
61	Overexpression of Bcl-2 Reduces Sex Differences in Neuron Number in the Brain and Spinal Cord. Journal of Neuroscience, 2003, 23, 2357-2362.	3.6	71
62	Testosterone regulates BCL-2 immunoreactivity in a sexually dimorphic motor pool of adult rats. Brain Research, 2002, 950, 312-316.	2.2	21
63	Perineal muscles and motoneurons are sexually monomorphic in the naked moleâ€rat <i>(Heterocephalus glaber)</i> . Journal of Neurobiology, 2002, 51, 33-42.	3.6	45
64	Castration reduces motoneuron soma size but not dendritic length in the spinal nucleus of the bulbocavernosus of wild-type and BCL-2 overexpressing mice. Journal of Neurobiology, 2002, 53, 403-412.	3.6	21
65	Blockade of Endogenous Neurotrophic Factors Prevents the Androgenic Rescue of Rat Spinal Motoneurons. Journal of Neuroscience, 2001, 21, 4366-4372.	3.6	44
66	Ciliary neurotrophic factor increases muscle fiber number in the developing levator ani muscle of female rats. Neuroscience Letters, 2000, 296, 73-76.	2.1	13
67	A sex difference in the hypothalamus of the spotted hyena. Nature Neuroscience, 1999, 2, 943-945.	14.8	18
68	Effects of testosterone on the development of a sexually dimorphic neuromuscular system in ciliary neurotrophic factor receptor knockout mice. , 1999, 41, 317-325.		16
69	Expression and androgen regulation of the ciliary neurotrophic factor receptor (CNTFR?) in muscles and spinal cord. Journal of Neurobiology, 1998, 35, 217-225.	3.6	19
70	Ciliary Neurotrophic Factor Receptor α in Spinal Motoneurons is Regulated by Gonadal Hormones. Journal of Neuroscience, 1998, 18, 8720-8729.	3.6	39
71	Expression and androgen regulation of the ciliary neurotrophic factor receptor (CNTFRalpha) in muscles and spinal cord. Journal of Neurobiology, 1998, 35, 217-25.	3.6	4
72	Sexual Dimorphism in the Spinal Cord Is Absent in Mice Lacking the Ciliary Neurotrophic Factor Receptor. Journal of Neuroscience, 1997, 17, 9605-9612.	3.6	44

#	Article	IF	CITATIONS
73	Intrauterine position affects motoneuron number and muscle size in a sexually dimorphic neuromuscular system. Brain Research, 1996, 735, 119-124.	2.2	13
74	Sexual dimorphism of perineal muscles and motoneurons in spotted hyenas. Journal of Comparative Neurology, 1996, 375, 333-343.	1.6	46
75	Short- and long-term effects of ciliary neurotrophic factor on androgen-sensitive motoneurons in the lumbar spinal cord. , 1996, 31, 263-273.		10
76	Sexual dimorphism of perineal muscles and motoneurons in spotted hyenas. , 1996, 375, 333.		1
77	Ciliary neurotrophic factor arrests muscle and motoneuron degeneration in androgen-insensitive rats. Journal of Neurobiology, 1995, 28, 354-362.	3.6	34
78	Ontogeny of calcitonin gene-related peptide immunoreactivity in rat lumbar motoneurons: Delayed appearance and sexual dimorphism in the spinal nucleus of the bulbocavernosus. Journal of Comparative Neurology, 1993, 330, 514-520.	1.6	8
79	Ciliary neurotrophic factor maintains motoneurons and their target muscles in developing rats. Journal of Neuroscience, 1993, 13, 4720-4726.	3.6	104
80	Differential effects of testosterone metabolites upon the size of sexually dimorphic motoneurons in adulthood. Hormones and Behavior, 1992, 26, 204-213.	2.1	44
81	Regulation of motoneuron death in the spinal nucleus of the bulbocavernsus. Journal of Neurobiology, 1992, 23, 1192-1203.	3.6	48
82	Does androgen affect axonal transport of cholera toxin HRP in spinal motoneurons?. Neuroscience Letters, 1991, 126, 199-202.	2.1	35
83	Sexual dimorphism and androgen effects on spinal motoneurons innervating the rat flexor digitorum brevis. Brain Research, 1991, 561, 269-273.	2.2	77
84	Steroid influences on a mammalian neuromuscular system. Seminars in Neuroscience, 1991, 3, 459-468.	2.2	16
85	Lipectomy influences white adipose tissue lipoprotein lipase activity and plasma triglyceride levels in ground squirrels. Metabolism: Clinical and Experimental, 1988, 37, 782-786.	3.4	11
86	Seasonal variation in mammalian striated muscle mass and motoneuron morphology. Journal of Neurobiology, 1987, 18, 155-165.	3.6	160
87	Motoneuronal death during human fetal development. Journal of Comparative Neurology, 1987, 264, 118-122.	1.6	44
88	Recovery of white adipose tissue after lipectomy in female ground squirrels. Canadian Journal of Zoology, 1986, 64, 128-131.	1.0	13
89	Sexual dimorphism in human and canine spinal cord: role of early androgen Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7527-7531.	7.1	102
90	Fat Ablation and Food Restriction Influence Reproductive Development and Hibernation in Ground Squirrels1. Biology of Reproduction, 1986, 34, 831-840.	2.7	13

#	Article	IF	CITATIONS
91	Rapid recovery of body mass after surgical removal of adipose tissue in ground squirrels Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2270-2272.	7.1	25
92	Reproductive state modulates ethanol intake in rats: Effects of ovariectomy, ethanol concentration, estrous cycle and pregnancy. Pharmacology Biochemistry and Behavior, 1982, 17, 323-331.	2.9	48
93	Endocrine control of ethanol intake by rats or hamsters: Relative contributions of the ovaries, adrenals and steroids. Pharmacology Biochemistry and Behavior, 1982, 17, 529-537.	2.9	37