Jianhua Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371274/publications.pdf

Version: 2024-02-01

130	10,895	57	102
papers	citations	h-index	g-index
130	130	130	10300 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Numerical analysis and experimental investigation of a multi-principle drafting system in ring spinning. Textile Reseach Journal, 2022, 92, 1940-1951.	2.2	1
2	Time-temperature-dependent mechanical durability analysis of short (glass) fiber-reinforced polyethylene terephthalate injection molding composites with weld line. Textile Reseach Journal, 2022, 92, 1923-1939.	2.2	3
3	Synthesizing Superior Flexible Oxide Perovskite Ceramic Nanofibers by Precisely Controlling Crystal Nucleation and Growth. Small, 2022, 18, e2106500.	10.0	16
4	Platinum Cluster/Carbon Quantum Dots Derived Graphene Heterostructured Carbon Nanofibers for Efficient and Durable Solarâ€Driven Electrochemical Hydrogen Evolution. Small Methods, 2022, 6, e2101470.	8.6	72
5	One-step extraction of ramie cellulose fibers and reutilization of degumming solution. Textile Reseach Journal, 2022, 92, 3579-3590.	2.2	6
6	Fabrication of Flexible Mesoporous Black Nb ₂ O ₅ Nanofiber Films for Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction into CH ₄ . Advanced Materials, 2022, 34, e2200756.	21.0	104
7	Flexible, self-cleaning, and high-performance ceramic nanofiber-based moist-electric generator enabled by interfacial engineering. Science China Technological Sciences, 2022, 65, 450-457.	4.0	7
8	Designing Thermomechanical Stable Gelâ€Polymer Electrolytes Mediated by Blockâ€Copolymer Nanofibers for Quasiâ€Solidâ€State Lithium Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5. 8	3
9	Constructing Highly Conductive and Thermomechanical Stable Quasiâ€Solid Electrolytes by Selfâ€Polymerization of Liquid Electrolytes within Porous Polyimide Nanofiber Films. Advanced Functional Materials, 2022, 32, .	14.9	22
10	g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Research, 2021, 14, 1479-1487.	10.4	21
11	Direct Magnetic Reinforcement of Electrocatalytic ORR/OER with Electromagnetic Induction of Magnetic Catalysts. Advanced Materials, 2021, 33, e2007525.	21.0	159
12	Dynamic Regulation of Lithium Dendrite Growth with Electromechanical Coupling Effect of Soft BaTiO ₃ Ceramic Nanofiber Films. ACS Nano, 2021, 15, 3161-3170.	14.6	56
13	Selective nucleation and targeted deposition effect of lithium in a lithium-metal host anode. Journal of Materials Chemistry A, 2021, 9, 5381-5389.	10.3	29
14	Microfluidic-directed biomimetic Bulbine torta-like microfibers based on inhomogeneous viscosity rope-coil effect. Lab on A Chip, 2021, 21, 2594-2604.	6.0	5
15	Solidâ€State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solidâ€State Interfaces. Advanced Materials, 2021, 33, e2008084.	21.0	61
16	Earthworm-Inspired Ultradurable Superhydrophobic Fabrics from Adaptive Wrinkled Skin. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6758-6766.	8.0	41
17	Facile Synthesis of Bimetallic Fluoride Heterojunctions on Defect-Enriched Porous Carbon Nanofibers for Efficient ORR Catalysts. Nano Letters, 2021, 21, 2618-2624.	9.1	73
18	Facile Fabrication of Flexible Carbon Nanofiber Electrodes with Both High Packing Density and Capacity for Liâ€lon Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100020.	5.8	2

#	Article	IF	Citations
19	In Situ Synthesis of Mechanically Robust, Transparent Nanofiberâ€Reinforced Hydrogels for Highly Sensitive Multiple Sensing. Advanced Functional Materials, 2021, 31, 2103117.	14.9	100
20	A General Strategy to Fabricate Flexible Oxide Ceramic Nanofibers with Gradient Bendingâ€Resilience Properties. Advanced Functional Materials, 2021, 31, 2103989.	14.9	27
21	Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy, 2021, 85, 106031.	16.0	82
22	Tailoring Nanoporous-Engineered Sponge Fiber Molecular Sieves with Ternary-Nested Architecture for Precise Molecular Separation. ACS Nano, 2021, 15, 13623-13632.	14.6	33
23	Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chemical Engineering Journal, 2021, 417, 129211.	12.7	34
24	Superior Flexibility in Oxide Ceramic Crystal Nanofibers. Advanced Materials, 2021, 33, e2105011.	21.0	46
25	Hierarchical Porous Carbon Nanofibers with Tunable Geometries and Porous Structures Fabricated by a Scalable Electrospinning Technique. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44768-44776.	8.0	16
26	Tensile Stress-Gated Electromagnetic Interference Shielding Fabrics with Real-Time Adjustable Shielding Efficiency. ACS Sustainable Chemistry and Engineering, 2021, 9, 13999-14005.	6.7	26
27	Novel Eco-Friendly Flame Retardants Based on Nitrogen–Silicone Schiff Base and Application in Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 290-301.	6.7	83
28	One-step synthesis of a macroporous Cu–g/C ₃ N ₄ nanofiber electrocatalyst for efficient oxygen reduction reaction. Chemical Communications, 2020, 56, 14087-14090.	4.1	19
29	In-situ growth of graphene on carbon nanofiber from lignin. Carbon, 2020, 169, 446-454.	10.3	30
30	Highly Elastic Block Copolymer Binders for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38132-38139.	8.0	38
31	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€Supported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie, 2020, 132, 23452-23460.	2.0	3
32	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€Supported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie - International Edition, 2020, 59, 23252-23260.	13.8	87
33	<i>Setaria Viridis</i> -Inspired Electrode with Polyaniline Decorated on Porous Heteroatom-Doped Carbon Nanofibers for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 43634-43645.	8.0	47
34	Electroless Deposition of Automatically Shedded Thin Copper Foils. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28831-28839.	8.0	8
35	A novel organicâ€inorganic flame retardant of ammonium polyphosphate chemically coated by Schiff baseâ€containing branched polysiloxane for polyamide 6. Polymers for Advanced Technologies, 2020, 31, 2763-2774.	3.2	18
36	Polymer Template Synthesis of Flexible SiO ₂ Nanofibers to Upgrade Composite Electrolytes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31439-31447.	8.0	58

#	Article	IF	Citations
37	Transformation of oxide ceramic textiles from insulation to conduction at room temperature. Science Advances, 2020, 6, eaay8538.	10.3	33
38	Flexible heteroatomâ€doped porous carbon nanofiber cages for electrode scaffolds. , 2020, 2, 472-481.		21
39	Polymer Template Synthesis of Flexible BaTiO ₃ Crystal Nanofibers. Advanced Functional Materials, 2019, 29, 1907919.	14.9	129
40	Carbonâ€Nanoplated CoS@TiO ₂ Nanofibrous Membrane: An Interfaceâ€Engineered Heterojunction for Highâ€Efficiency Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18903-18907.	13.8	119
41	Constructing Ionic Gradient and Lithiophilic Interphase for Highâ∈Rate Liâ∈Metal Anode. Small, 2019, 15, e1905171.	10.0	42
42	Carbonâ€Nanoplated CoS@TiO 2 Nanofibrous Membrane: An Interfaceâ€Engineered Heterojunction for Highâ€Efficiency Electrocatalytic Nitrogen Reduction. Angewandte Chemie, 2019, 131, 19079-19083.	2.0	22
43	Stable Confinement of Black Phosphorus Quantum Dots on Black Tin Oxide Nanotubes: A Robust, Doubleâ€Active Electrocatalyst toward Efficient Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 16439-16444.	13.8	112
44	Self-Assembled Conductive Metal-Oxide Nanofiber Interface for Stable Li-Metal Anode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44124-44132.	8.0	16
45	Stable Confinement of Black Phosphorus Quantum Dots on Black Tin Oxide Nanotubes: A Robust, Doubleâ€Active Electrocatalyst toward Efficient Nitrogen Fixation. Angewandte Chemie, 2019, 131, 16591-16596.	2.0	42
46	Facile fabrication of fluorine-free breathable poly(methylhydrosiloxane)/polyurethane fibrous membranes with enhanced water-resistant capability. Journal of Colloid and Interface Science, 2019, 556, 541-548.	9.4	40
47	Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries. IScience, 2019, 16, 122-132.	4.1	31
48	Polymer Template Synthesis of Soft, Light, and Robust Oxide Ceramic Films. IScience, 2019, 15, 185-195.	4.1	34
49	Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Materials, 2019, 23, 306-313.	18.0	140
50	Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nature Communications, 2019, 10, 5584.	12.8	139
51	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	8.6	97
52	3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities. Advanced Energy Materials, 2019, 9, 1802578.	19.5	132
53	Polymer nanofibre composite nonwovens with metal-like electrical conductivity. Npj Flexible Electronics, 2018, 2, .	10.7	29
54	Mixed Ionic and Electronic Conductor for Liâ€Metal Anode Protection. Advanced Materials, 2018, 30, 1705105.	21.0	92

#	Article	IF	CITATIONS
55	Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4, eaas8925.	10.3	414
56	Numerical characterization and simulation of the three-dimensional tubular woven fabric. Journal of Industrial Textiles, 2018, 47, 2112-2127.	2.4	3
57	Nanofiberâ€Based Hydrogels: Controllable Synthesis and Multifunctional Applications. Macromolecular Rapid Communications, 2018, 39, e1800058.	3.9	46
58	Effects of coagulation conditions on structure and properties of cellulose-based fibers from aqueous NaOH solvent. Carbohydrate Polymers, 2017, 164, 118-126.	10.2	5
59	Robust Fluorine-Free Superhydrophobic Amino-Silicone Oil/SiO ₂ Modification of Electrospun Polyacrylonitrile Membranes for Waterproof-Breathable Application. ACS Applied Materials & Diterfaces, 2017, 9, 15139-15147.	8.0	136
60	Hierarchical Porous Structured SiO ₂ /SnO ₂ Nanofibrous Membrane with Superb Flexibility for Molecular Filtration. ACS Applied Materials & Superb Flexibility for Molecular Filtration.	8.0	94
61	Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification. Scientific Reports, 2017, 7, 1636.	3.3	101
62	Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. Journal of Colloid and Interface Science, 2017, 508, 508-516.	9.4	85
63	Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS Applied Materials & Emp; Interfaces, 2017, 9, 29302-29310.	8.0	101
64	Coagulation studies for hydroxyethyl cellulose (HEC) in NaOH/H2O solvent. Fibers and Polymers, 2017, 18, 1091-1097.	2.1	4
65	Polyvinyl Butyral Modified Polyvinylidene Fluoride Breathable–Waterproof Nanofibrous Membranes with Enhanced Mechanical Performance. Macromolecular Materials and Engineering, 2017, 302, .	3.6	36
66	Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO ₂ adsorption. RSC Advances, 2016, 6, 52171-52179.	3.6	33
67	Polybenzoxazine-based highly porous carbon nanofibrous membranes hybridized by tin oxide nanoclusters: durable mechanical elasticity and capacitive performance. Journal of Materials Chemistry A, 2016, 4, 7795-7804.	10.3	38
68	Ultralight Biomassâ€Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressureâ€Sensitivity. Advanced Materials, 2016, 28, 9512-9518.	21.0	405
69	Tailoring Water-Resistant and Breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27218-27226.	8.0	132
70	Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1600101.	11.2	213
71	Biodegradable poly(butylene succinate-co-terephthalate) nanofibrous membranes functionalized with cyclodextrin polymer for effective methylene blue adsorption. RSC Advances, 2016, 6, 108240-108246.	3.6	33
72	Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes. CrystEngComm, 2016, 18, 1139-1146.	2.6	30

#	Article	IF	CITATIONS
73	Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application. RSC Advances, 2016, 6, 29629-29637.	3.6	41
74	Insights into the flexibility of $ZrM < sub > x < / sub > O < sub > y < / sub > (M = Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials. Dalton Transactions, 2016, 45, 6660-6666.$	3.3	22
75	Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe ₂ O ₄ nanocrystals for highly efficient capacitive energy storage. Nanoscale, 2016, 8, 2195-2204.	5.6	54
76	Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Applied Materials & Enhances, 2015, 7, 13538-13546.	8.0	173
77	Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. Journal of Colloid and Interface Science, 2015, 457, 203-211.	9.4	163
78	Simultaneous visual detection and removal of lead(<scp>ii</scp>) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 18180-18189.	10.3	81
79	Hierarchical porous carbon nanofibrous membranes with an enhanced shape memory property for effective adsorption of proteins. RSC Advances, 2015, 5, 64318-64325.	3.6	27
80	Long-Life, High-Efficiency Lithium–Sulfur Battery from a Nanoassembled Cathode. Chemistry of Materials, 2015, 27, 5080-5087.	6.7	56
81	Highly Carbonylated Cellulose Nanofibrous Membranes Utilizing Maleic Anhydride Grafting for Efficient Lysozyme Adsorption. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15658-15666.	8.0	81
82	Constitution of a visual detection system for lead(<scp>ii</scp>) on polydiacetylene–glycine embedded nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 9722-9730.	10.3	39
83	Nanonet-structured poly(m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Advances, 2015, 5, 55478-55485.	3.6	62
84	Thermostable and nonflammable silica–polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 10551-10558.	10.3	58
85	The bending fatigue comparison between 3D braided rectangular composites and T-beam composites. Fibers and Polymers, 2015, 16, 634-639.	2.1	11
86	Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Advances, 2015, 5, 6027-6032.	3.6	47
87	Superelastic and Superhydrophobic Nanofiber-Assembled Cellular Aerogels for Effective Separation of Oil/Water Emulsions. ACS Nano, 2015, 9, 3791-3799.	14.6	612
88	Fluorinated polyurethane macroporous membranes with waterproof, breathable and mechanical performance improved by lithium chloride. RSC Advances, 2015, 5, 79807-79814.	3.6	38
89	In situ synthesis of flexible hierarchical TiO ₂ nanofibrous membranes with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 22136-22144.	10.3	86
90	Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. Journal of Materials Chemistry A, 2015, 3, 23946-23954.	10.3	153

#	Article	IF	Citations
91	Ready-to-use strip for l-ascorbic acid visual detection based on polyaniline/polyamide 66 nano-fibers/nets membranes. Talanta, 2015, 144, 1146-1154.	5.5	25
92	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 2015, 5, 91813-91820.	3.6	38
93	Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2015, 7, 20200-20207.	8.0	36
94	High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading. Chemistry of Materials, 2015, 27, 6394-6401.	6.7	73
95	Electreted polyetherimide–silica fibrous membranes for enhanced filtration of fine particles. Journal of Colloid and Interface Science, 2015, 439, 12-20.	9.4	167
96	Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 2014, 5, 5802.	12.8	860
97	Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydrate Polymers, 2014, 108, 192-199.	10.2	86
98	Superamphiphobic nanofibrous membranes for effective filtration of fine particles. Journal of Colloid and Interface Science, 2014, 428, 41-48.	9.4	137
99	Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. Journal of Colloid and Interface Science, 2014, 417, 18-26.	9.4	161
100	Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration. RSC Advances, 2014, 4, 2756-2763.	3.6	34
101	Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers. RSC Advances, 2014, 4, 61068-61076.	3.6	64
102	Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. RSC Advances, 2014, 4, 45760-45767.	3.6	36
103	In situ cross-linked superwetting nanofibrous membranes for ultrafast oil–water separation. Journal of Materials Chemistry A, 2014, 2, 10137-10145.	10.3	156
104	An approach for testing and predicting longitudinal tensile modulus of 3D braided composites. Journal of Reinforced Plastics and Composites, 2014, 33, 775-784.	3.1	12
105	Colorimetric strips for visual lead ion recognition utilizing polydiacetylene embedded nanofibers. Journal of Materials Chemistry A, 2014, 2, 18304-18312.	10.3	58
106	Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. Journal of Materials Chemistry A, 2013, 1, 14071.	10.3	165
107	Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. RSC Advances, 2013, 3, 7562.	3.6	45
108	Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Advances, 2013, 3, 2248-2255.	3.6	87

#	Article	IF	Citations
109	Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science, 2013, 58, 1173-1243.	32.8	440
110	Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers. RSC Advances, 2013, 3, 22994.	3.6	44
111	Sensitive metal ion sensors based on fibrous polystyrene membranes modified by polyethyleneimine. RSC Advances, 2012, 2, 1373-1378.	3.6	14
112	Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Advances, 2012, 2, 12216.	3.6	119
113	Novel fluorinated polybenzoxazine–silica films: chemical synthesis and superhydrophobicity. RSC Advances, 2012, 2, 12804.	3.6	39
114	Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 94-114.	12.3	100
115	Synthesis of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. Journal of Materials Chemistry, 2012, 22, 4619.	6.7	118
116	Surface modification of plasmaâ€pretreated expanded poly (tetrafluroethylene) films by graft copolymerization. Surface and Interface Analysis, 2012, 44, 578-583.	1.8	6
117	Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. Journal of Materials Chemistry, 2012, 22, 1445-1452.	6.7	170
118	Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. Journal of Materials Chemistry, 2012, 22, 15919.	6.7	102
119	Enzymatic treatment of mechanochemical modified natural bamboo fibers. Fibers and Polymers, 2012, 13, 600-605.	2.1	33
120	Label-free ultrasensitive colorimetric detection of copper(ii) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. Journal of Materials Chemistry, 2011, 21, 13345.	6.7	60
121	Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. Journal of Materials Chemistry, 2011, 21, 16231.	6.7	89
122	Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Advances, 2011, 1, 1482.	3.6	66
123	Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. Soft Matter, 2011, 7, 8376.	2.7	63
124	Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors. Journal of Materials Chemistry, 2011, 21, 12784.	6.7	84
125	Modification of natural bamboo fibers for textile applications. Fibers and Polymers, 2011, 12, 95-103.	2.1	35
126	Macromol. Rapid Commun. 21/2011. Macromolecular Rapid Communications, 2011, 32, .	3.9	0

#	Article	IF	CITATION
127	Evaluation of the availability of easy cationic dyeable copolyester fibers as electrostatic flocking piles. Journal of Applied Polymer Science, 2011, 120, 195-201.	2.6	13
128	Synthesis of poly(butylene succinateâ€ <i>co</i> â€butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. Journal of Applied Polymer Science, 2010, 115, 2203-2211.	2.6	78
129	Electrospun nanomaterials for ultrasensitive sensors. Materials Today, 2010, 13, 16-27.	14.2	562
130	Study of yarn properties and displacement deviation of acceleration points based on the novel drafting system. Journal of the Textile Institute, 0, , 1-12.	1.9	1