Sergio A Dassie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9370196/publications.pdf

Version: 2024-02-01

758635 676716 40 535 12 22 citations h-index g-index papers 40 40 40 591 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. Journal of Chemical Physics, 2005, 123, 184505.	1.2	87
2	Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Analytical Biochemistry, 2006, 350, 277-284.	1.1	57
3	Ligand-induced thermostability in proteins: Thermodynamic analysis of ANS–albumin interaction. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1750, 122-133.	1.1	54
4	When do nanowires break? A model for the theoretical study of the long-term stability of monoatomic nanowires. Chemical Physics Letters, 2008, 460, 261-265.	1.2	25
5	Effect of ligand protonation on the facilitated ion transfer reactions across oil/water interfaces. IV. Buffer solution effect. Journal of Electroanalytical Chemistry, 2010, 645, 1-9.	1.9	19
6	Comparative analysis of the transfer of alkaline and alkaline-earth cations across the water/1,2-dichloroethane interface. Electrochimica Acta, 1995, 40, 2953-2959.	2.6	18
7	Binding of the Highly Toxic Tetracycline Derivative, Anhydrotetracycline, to Bovine Serum Albumin. Biological and Pharmaceutical Bulletin, 2011, 34, 1301-1306.	0.6	18
8	Thermodynamic and structural analysis of homodimeric proteins: Model of \hat{l}^2 -lactoglobulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 383-391.	1.1	17
9	Atomistic computer simulations on the generation of bimetallic nanoparticles. Faraday Discussions, 2008, 138, 89-104.	1.6	16
10	Facilitated proton transfer or protonated species transfer reactions across oil water interfaces. Journal of Electroanalytical Chemistry, 2014, 728, 51-59.	1.9	16
11	Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach. Journal of Chemical Education, 2005, 82, 85.	1.1	15
12	Ion-Transfer Processes across Liquid/Liquid Interfaces Promoted by a Convective Flux Bulletin of the Chemical Society of Japan, 2002, 75, 235-240.	2.0	13
13	Thermodynamic Model for the Analysis of Calorimetric Data of Oligomeric Proteins. Journal of Physical Chemistry B, 2008, 112, 14325-14333.	1.2	13
14	Determination of flow patterns in a rotating disk electrode configuration by MRI. Journal of Electroanalytical Chemistry, 2015, 750, 100-106.	1.9	13
15	Externally Applied Electric Fields on Immiscible Lipid Monolayers:Â Repulsion between Condensed Domains Precludes Domain Migration. Langmuir, 2006, 22, 9664-9670.	1.6	12
16	Theoretical model of ion transfer-electron transfer coupled reactions at the thick-film modified electrodes. Journal of Electroanalytical Chemistry, 2017, 784, 25-32.	1.9	12
17	Some Theoretical Considerations Concerning Ion Hydration in the Case of Ion Transfer between Water and 1,2-Dichloroethane. Bulletin of the Chemical Society of Japan, 1998, 71, 549-554.	2.0	11
18	On the Stability of Ag/Au(111) Expanded Structures. Langmuir, 2002, 18, 6628-6632.	1.6	11

#	Article	IF	CITATIONS
19	Effect of ligand protonation on the facilitated ion transfer reactions across oil water interfaces. V. Applications of forced hydrodynamic conditions. Journal of Electroanalytical Chemistry, 2016, 765, 100-104.	1.9	10
20	lon transfer of weak acids across liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2016, 774, 111-121.	1.9	9
21	Facilitated proton transfer-electron transfer coupled reactions at thick-film modified electrodes. Electrochimica Acta, 2017, 258, 727-734.	2.6	9
22	An integrated theoretical-experimental approach to understand facilitated proton transfer-electron transfer coupled reactions at thick-film modified electrodes. Electrochimica Acta, 2018, 283, 1719-1731.	2.6	9
23	Anion Effect on the Solvent Extraction of Alkali Cations with Dibenzo-18-crown-6 in 1,2-Dichloroethane. Voltammetric and Spectroscopic Analysis Analytical Sciences, 1998, 14, 231-236.	0.8	8
24	Ion transfer across liquid liquid interface under forced hydrodynamic conditions. I: Digital simulations. Journal of Electroanalytical Chemistry, 2012, 666, 42-51.	1.9	7
25	A simple surface biofunctionalization strategy to inhibit the biofilm formation by Staphylococcus aureus on solid substrates. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110432.	2.5	7
26	On the photophysics of electrochemically generated silver nanoclusters: spectroscopic and theoretical characterization. Physical Chemistry Chemical Physics, 2020, 22, 16813-16821.	1.3	7
27	Theoretical Study about the Adsorption of Lead on (111), (100), (110) Monocrystalline Surfaces of Gold. Zeitschrift Fur Physikalische Chemie, 1994, 185, 33-50.	1.4	6
28	Facilitated proton transfer reactions via water autoprotolysis across oil water interfaces. Spectroelectrochemical analysis. Electrochimica Acta, 2019, 299, 430-440.	2.6	6
29	An integrated experimental-theoretical approach to understand the electron transfer mechanism of adsorbed ferrocene-terminated alkanethiol monolayers. Electrochimica Acta, 2018, 265, 303-315.	2.6	5
30	Facilitated proton transfer reactions via water autoprotolysis across oil water interfaces. Half-wave potential. Electrochimica Acta, 2020, 332, 135498.	2.6	5
31	Computer simulation of electrochemical nanostructuring induced by supersaturation conditions. Journal of Electroanalytical Chemistry, 2007, 607, 10-16.	1.9	4
32	Flowâ€Pattern Characterization of Biphasic Electrochemical Cells by Magnetic Resonance Imaging under Forced Hydrodynamic Conditions. ChemPhysChem, 2017, 18, 3469-3477.	1.0	4
33	Molecular Transport through TiO ₂ Mesoporous Thin Films: Correlation with the Partially Blocked Electrode Model. Journal of Physical Chemistry C, 2021, 125, 23521-23532.	1.5	4
34	Magnetic Resonance Imaging in Situ Visualization of an Electrochemical Reaction under Forced Hydrodynamic Conditions. ACS Omega, 2018, 3, 18630-18638.	1.6	2
35	Hanging meniscus rotating disk electrode: A theoretical perspective. Electrochimica Acta, 2019, 327, 135032.	2.6	2
36	Facilitated proton transfer via water autoprotolysis-electron transfer coupled reactions at thick-film modified electrodes. Electrochimica Acta, 2020, 349, 136316.	2.6	2

3

#	Article	IF	CITATIONS
37	An electroanalytical method for monitoring acid hydrolysis reactions using thick-film modified electrodes. Electrochimica Acta, 2021, 380, 137906.	2.6	2
38	Protein Oligomerization: Thermodynamic and Structural Analysis of the Dimerization of Beta-lactoglobulin. Biophysical Journal, 2010, 98, 28a-29a.	0.2	0
39	Facilitated Ion Transfer Reactions across Liquid Liquid Interfaces assisted by a Neutral Weak Acid: A Theoretical Approach ChemElectroChem, 0, , .	1.7	O
40	Facilitated Ion Transfer Reactions Across Liquid Liquid Interfaces Assisted by a Neutral Weak Acid: A Theoretical Approach. Chem $ElectroChem, 0, ,$.	1.7	0