Robert F Schwabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369905/publications.pdf

Version: 2024-02-01

75 papers

14,040 citations

71102 41 h-index 72 g-index

79 all docs

79 docs citations

79 times ranked 21519 citing authors

#	Article	IF	CITATIONS
1	TLR4 enhances TGF- \hat{l}^2 signaling and hepatic fibrosis. Nature Medicine, 2007, 13, 1324-1332.	30.7	1,712
2	Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527, 472-476.	27.8	1,498
3	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	28.4	1,338
4	Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Communications, 2013, 4, 2823.	12.8	1,012
5	Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance. Gastroenterology, 2014, 147, 765-783.e4.	1.3	587
6	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	28.9	535
7	Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology, 2013, 58, 1461-1473.	7.3	468
8	Deactivation of Hepatic Stellate Cells During Liver Fibrosis Resolution in Mice. Gastroenterology, 2012, 143, 1073-1083.e22.	1.3	422
9	The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 153-186.	22.4	422
10	A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021, 595, 114-119.	27.8	411
11	The gut microbiome and liver cancer: mechanisms and clinical translation. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 527-539.	17.8	401
12	High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nature Protocols, 2015, 10, 305-315.	12.0	400
13	Toll-Like Receptor Signaling in the Liver. Gastroenterology, 2006, 130, 1886-1900.	1.3	377
14	Apoptosis and necroptosis in the liver: a matter of life and death. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 738-752.	17.8	364
15	Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology, 2020, 158, 1913-1928.	1.3	346
16	The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. Journal of Clinical Investigation, 2015, 125, 539-550.	8.2	307
17	Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabolism, 2016, 24, 848-862.	16.2	279
18	Gut microbiome in HCC – Mechanisms, diagnosis and therapy. Journal of Hepatology, 2020, 72, 230-238.	3.7	206

#	Article	lF	Citations
19	Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes InÂVivo Attenuates Liver Fibrosis. Cell Stem Cell, 2016, 18, 797-808.	11.1	181
20	Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. Journal of Clinical Investigation, 2015, 125, 3891-3903.	8.2	175
21	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	16.8	159
22	Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Science Translational Medicine, 2018, 10 , .	12.4	151
23	Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. Journal of Clinical Investigation, 2021, 131, .	8.2	144
24	Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 406-421.e7.	16.2	141
25	CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut, 2014, 63, 1782-1792.	12.1	118
26	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	16.2	117
27	InÂVivo Hepatic Reprogramming of Myofibroblasts with AAV Vectors as a Therapeutic Strategy for Liver Fibrosis. Cell Stem Cell, 2016, 18, 809-816.	11.1	109
28	Hepatocellular Carcinomas Originate Predominantly from Hepatocytes and Benign Lesions from Hepatic Progenitor Cells. Cell Reports, 2017, 19, 584-600.	6.4	102
29	NLR Family Pyrin Domain ontaining 3 Inflammasome Activation in Hepatic Stellate Cells Induces Liver Fibrosis in Mice. Hepatology, 2019, 69, 845-859.	7.3	100
30	Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Science Signaling, 2016, 9, ra85.	3.6	96
31	Hyaluronan synthase 2–mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	12.4	91
32	High-Mobility Group Box 1 Is Dispensable for Autophagy, Mitochondrial Quality Control, and Organ Function InAVivo. Cell Metabolism, 2014, 19, 539-547.	16.2	82
33	IKKÎ ² phosphorylates p65 at S468 in transactivaton domain 2. FASEB Journal, 2005, 19, 1758-1760.	0.5	79
34	HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. Journal of Clinical Investigation, 2018, 128, 2436-2451.	8.2	78
35	Origin and Function of Myofibroblasts in the Liver. Seminars in Liver Disease, 2015, 35, 097-106.	3.6	72
36	Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice. Gastroenterology, 2019, 157, 793-806.e14.	1.3	67

#	Article	IF	CITATIONS
37	MicroRNAâ€21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology, 2018, 67, 2414-2429.	7.3	64
38	Maladaptive regeneration â€" the reawakening of developmental pathways in NASH and fibrosis. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 131-142.	17.8	64
39	Epithelial Transforming Growth Factor- \hat{l}^2 Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma. Gastroenterology, 2016, 150, 720-733.	1.3	57
40	Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells. PLoS ONE, 2016, 11, e0150893.	2.5	52
41	SIRT6 Protects Against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 341-364.	4.5	45
42	Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. Journal of Hepatology, 2021, 75, 888-899.	3.7	45
43	Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut, 2023, 72, 736-748.	12.1	42
44	Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Reports, 2022, 4, 100524.	4.9	35
45	Targeting Liver Cancer: First Steps toward a miRacle?. Cancer Cell, 2011, 20, 698-699.	16.8	34
46	Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. Journal of Hepatology, 2021, 74, 613-626.	3.7	34
47	Contributions of Fibroblasts, Extracellular Matrix, Stiffness, and Mechanosensing to Hepatocarcinogenesis. Seminars in Liver Disease, 2019, 39, 315-333.	3.6	33
48	Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis. Gut, 2016, 65, 1721-1732.	12.1	31
49	Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis. Journal of Hepatology, 2022, 77, 15-28.	3.7	31
50	Bacteria Deliver a Genotoxic Hit. Science, 2012, 338, 52-53.	12.6	28
51	TLR4 Deficiency Protects against Hepatic Fibrosis and Diethylnitrosamine-Induced Pre-Carcinogenic Liver Injury in Fibrotic Liver. PLoS ONE, 2016, 11, e0158819.	2.5	28
52	Oncostatin M Receptor–Targeted Antibodies Suppress STAT3 Signaling and Inhibit Ovarian Cancer Growth. Cancer Research, 2021, 81, 5336-5352.	0.9	27
53	TAZ-induced Cybb contributes to liver tumor formation in non-alcoholic steatohepatitis. Journal of Hepatology, 2022, 76, 910-920.	3.7	27
54	The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. Science Translational Medicine, 2022, 14, eabe5795.	12.4	25

#	Article	IF	Citations
55	Mouse Models of Liver Fibrosis. Methods in Molecular Biology, 2021, 2299, 339-356.	0.9	23
56	Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate. PLoS ONE, 2016, 11, e0146475.	2.5	21
57	Effect of rifaximin on infections, acuteâ€onâ€chronic liver failure and mortality in alcoholic hepatitis: A pilot study (RIFAâ€AH). Liver International, 2022, 42, 1109-1120.	3.9	20
58	Histone acetylation of bile acid transporter genes plays a critical role in cirrhosis. Journal of Hepatology, 2022, 76, 850-861.	3.7	17
59	c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nature Metabolism, 2020, 2, 1350-1367.	11.9	16
60	\hat{l}^2 -Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	1.3	13
61	FoxM1 Induces CCl2 Secretion From Hepatocytes Triggering Hepatic Inflammation, Injury, Fibrosis, and Liver Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 555-556.	4.5	8
62	HMGB1 and injury amplification. Oncotarget, 2015, 6, 23048-23049.	1.8	8
63	Gut microbiota and Toll-like receptors set the stage for cytokine-mediated failure of antibacterial responses in the fibrotic liver. Gut, 2017, 66, 396-398.	12.1	7
64	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor. Science Advances, 2022, 8, eabg9055.	10.3	7
65	NAD + Supplementation as a Novel Approach to cURIng HCC?. Cancer Cell, 2014, 26, 777-778.	16.8	5
66	Soluble Fibers Improve Metabolic Syndrome but May Cause Liver Disease and Hepatocellular Carcinoma. Hepatology, 2019, 70, 739-741.	7. 3	3
67	Chimeric Antigen Receptor T Cells as Senolytic and Antifibrotic Therapy. Hepatology, 2021, 73, 1227-1229.	7.3	3
68	Leukocyteâ€Derived Highâ€Mobility Group Box 1 Governs Hepatic Immune Responses to Listeria monocytogenes. Hepatology Communications, 2021, 5, 2104-2120.	4.3	3
69	Animal models of HCC – When injury meets mutation. Journal of Hepatology, 2018, 68, 193-194.	3.7	2
70	A disease-promoting role of the intestinal mycobiome in non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 765-767.	3.7	2
71	Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. Zeitschrift Fur Gastroenterologie, 2022, 60, 36-44.	0.5	2
72	Embracing basic and clinical innovation in hepatology. JHEP Reports, 2019, 1, 343-344.	4.9	0

#	Article	IF	CITATIONS
73	Regenerating research and life. JHEP Reports, 2020, 2, 100172.	4.9	0
74	Assessing the roles of various retinoidâ€metabolizing CYP enzymes in liver disease. FASEB Journal, 2009, 23, 215.2.	0.5	0
75	Breakthroughs in hepatology. Journal of Hepatology, 2022, 76, 1247-1248.	3.7	O