José M Di Diego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369631/publications.pdf Version: 2024-02-01

	567281	713466
1,857	15	21
citations	h-index	g-index
21	21	1729
docs citations	times ranked	citing authors
	citations 21	1,85715citationsh-index2121

#	Article	IF	CITATIONS
1	The M Cell: Journal of Cardiovascular Electrophysiology, 1999, 10, 1124-1152.	1.7	525
2	Ionic and Cellular Basis for the Predominance of the Brugada Syndrome Phenotype in Males. Circulation, 2002, 106, 2004-2011.	1.6	352
3	The pathophysiological mechanism underlying Brugada syndrome. Journal of Molecular and Cellular Cardiology, 2010, 49, 543-553.	1.9	323
4	Cisapride-Induced Transmural Dispersion of Repolarization and Torsade de Pointes in the Canine Left Ventricular Wedge Preparation During Epicardial Stimulation. Circulation, 2003, 108, 1027-1033.	1.6	115
5	Ischemic ventricular arrhythmias: Experimental models and their clinical relevance. Heart Rhythm, 2011, 8, 1963-1968.	0.7	114
6	Cellular basis for ST-segment changes observed during ischemia. Journal of Electrocardiology, 2003, 36, 1-5.	0.9	62
7	Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences. Journal of Electrocardiology, 2005, 38, 14-17.	0.9	52
8	Effect of Wenxin Keli and quinidine to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Heart Rhythm, 2013, 10, 1054-1062.	0.7	48
9	Acute myocardial ischemia: Cellular mechanisms underlying ST segment elevation. Journal of Electrocardiology, 2014, 47, 486-490.	0.9	48
10	Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants. Journal of Cardiovascular Electrophysiology, 2012, 23, 423-432.	1.7	44
11	Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations. Journal of Molecular and Cellular Cardiology, 2013, 54, 53-64.	1.9	44
12	Tpeak-Tend interval as a marker of arrhythmic risk. Heart Rhythm, 2019, 16, 954-955.	0.7	22
13	Acacetin suppresses the electrocardiographic and arrhythmic manifestations of the J wave syndromes. PLoS ONE, 2020, 15, e0242747.	2.5	20
14	J wave syndromes as a cause of malignant cardiac arrhythmias. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 684-699.	1.2	18
15	Atria are More Sensitive Than Ventricles to GS-458967-Induced Inhibition of Late Sodium Current. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 501-508.	2.0	17
16	Tpeak-Tend as a predictor of ventricular arrhythmogenesis. International Journal of Cardiology, 2017, 249, 75-76.	1.7	14
17	A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials. Biochemical Pharmacology, 2016, 108, 36-46.	4.4	11
18	Interventricular differences in sodium current and its potential role in Brugada syndrome. Physiological Reports, 2018, 6, e13787.	1.7	10

#	Article	IF	CITATIONS
19	J wave syndromes: What's new?. Trends in Cardiovascular Medicine, 2022, 32, 350-363.	4.9	8
20	Inferolateral J-wave syndromes: A reflection of abnormal repolarization, depolarization, or both?. Heart Rhythm, 2019, 16, 791-792.	0.7	6
21	Reply to the Editor— Tpeak-Tend is alive and well. Heart Rhythm, 2019, 16, e49-e50.	0.7	4