
Richard A Kammerer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183825.	2.6	10
2	Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3. Journal of Biological Chemistry, 2021, 296, 100684.	3.4	4
3	Highâ€Level Production of Phenylacetaldehyde using Fusionâ€Tagged Styrene Oxide Isomerase. Advanced Synthesis and Catalysis, 2021, 363, 1714-1721.	4.3	12
4	Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 2020, 175, 36-43.	1.6	3
5	Homodimerization of coronin A through the Câ€terminal coiledâ€coil domain is essential for multicellular differentiation of <i>DictyosteliumÂdiscoideum</i> . FEBS Letters, 2020, 594, 2116-2127.	2.8	1
6	Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure, 2019, 27, 1375-1383.e3.	3.3	11
7	Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure, 2018, 26, 375-382.e4.	3.3	47
8	Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix. Biochemistry, 2017, 56, 1604-1619.	2.5	6
9	Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Scientific Reports, 2017, 7, 43588.	3.3	23
10	Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nature Cell Biology, 2017, 19, 480-492.	10.3	147
11	Angiopoietin-1 enhances neutrophil chemotaxis in vitro and migration in vivo through interaction with CD18 and release of CCL4. Scientific Reports, 2017, 7, 2332.	3.3	13
12	Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure, 2017, 25, 924-932.e4.	3.3	37
13	Structural basis of katanin p60:p80 complex formation. Scientific Reports, 2017, 7, 14893.	3.3	24
14	Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Proceedings of the United States of America, 2017, 114, E9821-E9828.	7.1	35
15	Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network. Journal of Biological Chemistry, 2016, 291, 18496-18504.	3.4	31
16	Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Scientific Reports, 2016, 6, 30668.	3.3	26
17	Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. Developmental Cell, 2016, 37, 362-376.	7.0	90
18	SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centrioleAarchitecture. Nature Cell Biology, 2016, 18, 393-403.	10.3	73

RICHARD A KAMMERER

#	Article	IF	CITATIONS
19	Structure of the BoNT/A1 – receptor complex. Toxicon, 2015, 107, 25-31.	1.6	6
20	Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling. PLoS Biology, 2014, 12, e1001820.	5.6	62
21	A Type IV Translocated Legionella Cysteine Phytase Counteracts Intracellular Growth Restriction by Phytate. Journal of Biological Chemistry, 2014, 289, 34175-34188.	3.4	24
22	GAS2-like proteins mediate communication between microtubules and actin through interaction with end-binding proteins. Journal of Cell Science, 2014, 127, 2672-82.	2.0	51
23	Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature, 2014, 505, 108-111.	27.8	103
24	Botulinum neurotoxins: new questions arising from structural biology. Trends in Biochemical Sciences, 2014, 39, 517-526.	7.5	25
25	Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: Role of eNOS and VE-cadherin. Pharmacological Research, 2014, 80, 43-51.	7.1	31
26	Synthesis and Evaluation of Biphenyl Compounds as Kinesin Spindle Protein Inhibitors. Chemistry and Biodiversity, 2013, 10, 538-555.	2.1	5
27	Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Journal of Cell Biology, 2013, 200, 259-270.	5.2	189
28	Structural Basis for the Oligomerization-State Switch from a Dimer to a Trimer of an Engineered Cortexillin-1 Coiled-Coil Variant. PLoS ONE, 2013, 8, e63370.	2.5	2
29	Spectraplakins Promote Microtubule-Mediated Axonal Growth by Functioning As Structural Microtubule-Associated Proteins and EB1-Dependent +TIPs (Tip Interacting Proteins). Journal of Neuroscience, 2012, 32, 9143-9158.	3.6	104
30	Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis. Critical Care, 2012, 16, R182.	5.8	57
31	Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150glued. Journal of Structural Biology, 2012, 177, 160-167.	2.8	36
32	Collagen VI, Conformation of A-domain Arrays and Microfibril Architecture. Journal of Biological Chemistry, 2011, 286, 40266-40275.	3.4	21
33	Characterization of C2L3 (CAS2-like 3), a New Microtubule- and Actin-binding Protein Related to Spectraplakins. Journal of Biological Chemistry, 2011, 286, 24987-24995.	3.4	31
34	Mutations in HPSE2 Cause Urofacial Syndrome. American Journal of Human Genetics, 2010, 86, 963-969.	6.2	88
35	Mutations in HPSE2 Cause Urofacial Syndrome. American Journal of Human Genetics, 2010, 87, 309.	6.2	1
36	The nuclear protein Waharan is required for endosomal-lysosomal trafficking in <i>Drosophila</i> . Journal of Cell Science, 2010, 123, 2369-2374.	2.0	10

RICHARD A KAMMERER

#	Article	IF	CITATIONS
37	Molecular basis of coiled-coil oligomerization-state specificity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19850-19855.	7.1	66
38	Laminin chain assembly is regulated by specific coiled-coil interactions. Journal of Structural Biology, 2010, 170, 398-405.	2.8	41
39	A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F). Journal of Biological Chemistry, 2009, 284, 1628-1635.	3.4	83
40	Role of dimerization and substrate exclusion in the regulation of bone morphogenetic protein-1 and mammalian tolloid. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8561-8566.	7.1	40
41	Structure and disorder in the ribonuclease S-peptide probed by NMR residual dipolar couplings. Protein Science, 2009, 12, 2132-2140.	7.6	27
42	Polymorphism in an Amyloidâ€Like Fibrilâ€Forming Model Peptide. Angewandte Chemie - International Edition, 2008, 47, 5842-5845.	13.8	53
43	Atomic Models of De Novo Designed ccβ-Met Amyloid-Like Fibrils. Journal of Molecular Biology, 2008, 376, 898-912.	4.2	34
44	Molecular basis of coiled-coil formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7062-7067.	7.1	116
45	Electrostatic Contributions to the Stability of the GCN4 Leucine Zipper Structure. Journal of Molecular Biology, 2007, 374, 206-219.	4.2	51
46	Thermodynamic and Structural Studies of Carbohydrate Binding by the Agrin-G3 Domain. Biochemistry, 2007, 46, 9541-9550.	2.5	9
47	Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Science, 2007, 16, 1349-1359.	7.6	99
48	De novo design of a two-stranded coiled-coil switch peptide. Journal of Structural Biology, 2006, 155, 146-153.	2.8	41
49	Structure of the Extracellular Domain of Tie Receptor Tyrosine Kinases and Localization of the Angiopoietin-binding Epitope. Journal of Biological Chemistry, 2006, 281, 28408-28414.	3.4	35
50	Design of a Coiled-Coil-based Model Peptide System to Explore the Fundamentals of Amyloid Fibril Formation. International Journal of Peptide Research and Therapeutics, 2005, 11, 43-52.	1.9	5
51	Evidence That Monoclonal Antibodies Directed against the Integrin Î ² Subunit Plexin/Semaphorin/Integrin Domain Stimulate Function by Inducing Receptor Extension. Journal of Biological Chemistry, 2005, 280, 4238-4246.	3.4	52
52	Oligomerization and Multimerization Are Critical for Angiopoietin-1 to Bind and Phosphorylate Tie2. Journal of Biological Chemistry, 2005, 280, 20126-20131.	3.4	134
53	A conserved trimerization motif controls the topology of short coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13891-13896.	7.1	88
54	Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5553-5558.	7.1	134

RICHARD A KAMMERER

#	Article	IF	CITATIONS
55	COMP-Ang1: A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5547-5552.	7.1	236
56	Exploring amyloid formation by a de novo design. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4435-4440.	7.1	166
57	Modulation of Agrin Function by Alternative Splicing and Ca2+ Binding. Structure, 2004, 12, 503-515.	3.3	45
58	Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Molecular Biology, 2004, 55, 579-594.	3.9	74
59	Interaction of filamin A with the integrin β7cytoplasmic domain: role of alternative splicing and phosphorylation. FEBS Letters, 2004, 569, 185-190.	2.8	47
60	Collagen Stabilization at Atomic Level. Structure, 2003, 11, 339-346.	3.3	76
61	The Angiopoietin-like Factor Cornea-derived Transcript 6 Is a Putative Morphogen for Human Cornea. Journal of Biological Chemistry, 2002, 277, 686-693.	3.4	41
62	Characterization of the Matrilin Coiled-coil Domains Reveals Seven Novel Isoforms. Journal of Biological Chemistry, 2002, 277, 19071-19079.	3.4	50
63	Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics. Journal of Molecular Biology, 2002, 317, 459-470.	4.2	91
64	Stabilization of short collagen-like triple helices by protein engineering. Journal of Molecular Biology, 2001, 308, 1081-1089.	4.2	177
65	1H, 13C and 15N backbone assignments for the C-terminal globular domain of agrin. Journal of Biomolecular NMR, 2001, 20, 295-296.	2.8	4
66	The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nature Structural Biology, 2001, 8, 705-709.	9.7	41
67	An Intrahelical Salt Bridge within the Trigger Site Stabilizes the GCN4 Leucine Zipper. Journal of Biological Chemistry, 2001, 276, 13685-13688.	3.4	47
68	Subdomain-Specific Localization of Climp-63 (P63) in the Endoplasmic Reticulum Is Mediated by Its Luminal α-Helical Segment. Journal of Cell Biology, 2001, 153, 1287-1300.	5.2	127
69	The unusually stable coiled-coil domain of COMP exhibits cold and heat denaturation in 4–6 M guanidinium chloride. Biophysical Chemistry, 2000, 85, 179-186.	2.8	24
70	Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nature Structural Biology, 2000, 7, 772-776.	9.7	155
71	The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure, 2000, 8, 223-230.	3.3	114
72	Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO Journal, 2000, 19, 572-580.	7.8	92

#	Article	IF	CITATIONS
73	A Distinct Seven-residue Trigger Sequence Is Indispensable for Proper Coiled-coil Formation of the Human Macrophage Scavenger Receptor Oligomerization Domain. Journal of Biological Chemistry, 2000, 275, 11672-11677.	3.4	46
74	What are oligomerization domains good for?. Matrix Biology, 2000, 19, 283-288.	3.6	39
75	Toward a High-Resolution Structure of Phospholamban:Â Design of Soluble Transmembrane Domain Mutantsâ€. Biochemistry, 2000, 39, 6825-6831.	2.5	25
76	Domain analysis of cortexillin I: actin-bundling, PIP2-binding and the rescue of cytokinesis. EMBO Journal, 1999, 18, 5274-5284.	7.8	67
77	Heterodimerization of a Functional GABABReceptor Is Mediated by Parallel Coiled-Coil α-Helicesâ€. Biochemistry, 1999, 38, 13263-13269.	2.5	88
78	Contributions of the ionization states of acidic residues to the stability of the coiled coil domain of matrilin-1. FEBS Letters, 1999, 446, 75-80.	2.8	18
79	All-trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five-stranded coiled-coil domain of cartilage oligomeric matrix protein. EMBO Journal, 1998, 17, 5265-5272.	7.8	67
80	A distinct 14 residue site triggers coiled-coil formation in cortexillin I. EMBO Journal, 1998, 17, 1883-1891.	7.8	113
81	NMR structure of a parallel homotrimeric coiled coil. Nature Structural and Molecular Biology, 1998, 5, 687-691.	8.2	36
82	¹⁵ N backbone dynamics of the Sâ€peptide from ribonuclease A in its free and Sâ€protein bound forms: Toward a siteâ€specific analysis of entropy changes upon folding. Protein Science, 1998, 7, 389-402.	7.6	35
83	Rat GTP cyclohydrolase I is a homodecameric protein complex containing high-affinity calcium-binding sites 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1998, 279, 189-199.	4.2	21
84	Crystallization and Preliminary X-Ray Diffraction Analysis of the 190-ÃLong Coiled-Coil Dimerization Domain of the Actin-Bundling Protein Cortexillin I fromDictyostelium discoideum. Journal of Structural Biology, 1998, 122, 293-296.	2.8	7
85	An autonomous folding unit mediates the assembly of two-stranded coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13419-13424.	7.1	166
86	Tenascin-C Hexabrachion Assembly Is a Sequential Two-step Process Initiated by Coiled-coil α-Helices. Journal of Biological Chemistry, 1998, 273, 10602-10608.	3.4	99
87	Structural Analysis of the Sixth Immunoglobulinâ€Like Domain of Mouse Neural Cell Adhesion Molecule L1 and Its Interactions with αvl²3, αllbl²3, and α5l²1 Integrins. Journal of Neurochemistry, 1998, 71, 2615-2625.	3.9	35
88	α-Helical coiled-coil oligomerization domains in extracellular proteins. Matrix Biology, 1997, 15, 555-565.	3.6	74
89	Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Protein Science, 1997, 6, 1734-1745.	7.6	40
90	Cortexillins, Major Determinants of Cell Shape and Size, Are Actin-Bundling Proteins with a Parallel Coiled-Coil Tail. Cell, 1996, 86, 631-642.	28.9	172

#	Article	IF	CITATIONS
91	The Oligomerization Domain of the Asialoglycoprotein Receptor Preferentially Forms 2:2 Heterotetramers in Vitro. Journal of Biological Chemistry, 1996, 271, 31996-32001.	3.4	44
92	A 35-kDa Protein Is the Basic Unit of the Core from the 2 × 104-kDa Aggregation Factor Responsible for Species-specific Cell Adhesion in the Marine Sponge. Journal of Biological Chemistry, 1996, 271, 23558-23565.	3.4	33
93	Selective Chain Recognition in the C-terminal α-Helical Coiled-coil Region of Laminin. Journal of Molecular Biology, 1995, 250, 64-73.	4.2	48
94	Stabilization of the α-Helical Coiled-coil Domain in Laminin by C-terminal Disulfide Bonds. Journal of Molecular Biology, 1995, 250, 74-79.	4.2	26