List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369352/publications.pdf Version: 2024-02-01

		22153	33894
182	11,132	59	99
papers	citations	h-index	g-index
197	197	197	7683
all docs	docs citations	times ranked	citing authors
197 all docs	197 docs citations	197 times ranked	7683 citing authors

#	Article	IF	CITATIONS
1	Gaseotransmitters Modulate Inspiratory Drive from the Hypoglossal Nucleus. FASEB Journal, 2022, 36, .	0.5	0
2	Activation of Sympathetic Nervous System Contributes to Erthroprotein Gene Upregulation by Hypobaric Hypoxia. FASEB Journal, 2022, 36, .	0.5	0
3	Carotid body responses to <scp>O₂</scp> and <scp>CO₂</scp> in hypoxiaâ€tolerant naked mole rats. Acta Physiologica, 2022, 236, .	3.8	6
4	Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. Journal of Neurophysiology, 2021, 125, 2054-2067.	1.8	13
5	Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. Journal of Applied Physiology, 2021, 130, 1122-1132.	2.5	6
6	Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. Journal of Neurophysiology, 2021, 125, 1533-1542.	1.8	5
7	Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Frontiers in Physiology, 2021, 12, 688322.	2.8	10
8	Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Frontiers in Physiology, 2021, 12, 701995.	2.8	5
9	Lysine demethylase KDM6B regulates HIF-1α-mediated systemic and cellular responses to intermittent hypoxia. Physiological Genomics, 2021, 53, 385-394.	2.3	12
10	Role of the carotid chemoreceptors in insulin-mediated sympathoexcitation in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R173-R181.	1.8	12
11	Hypoxia-inducible factor-1 mediates pancreatic β-cell dysfunction by intermittent hypoxia. American Journal of Physiology - Cell Physiology, 2020, 319, C922-C932.	4.6	15
12	Olfactory receptor 78 participates in carotid body response to a wide range of low O ₂ levels but not severe hypoxia. Journal of Neurophysiology, 2020, 123, 1886-1895.	1.8	21
13	2019 Nobel Prize in Physiology or Medicine. Physiology, 2020, 35, 81-83.	3.1	5
14	Hypoxia-inducible factors and obstructive sleep apnea. Journal of Clinical Investigation, 2020, 130, 5042-5051.	8.2	135
15	H2S mediates carotid body response to hypoxia but not anoxia. Respiratory Physiology and Neurobiology, 2019, 259, 75-85.	1.6	14
16	Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. Journal of Neurophysiology, 2019, 122, 1874-1883.	1.8	4
17	Neural activation of molecular circuitry in intermittent hypoxia. Current Opinion in Physiology, 2019, 7, 9-14.	1.8	10
18	Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS ONE, 2019, 14, e0215905.	2.5	6

#	Article	IF	CITATIONS
19	Impaired Acute Hypoxic Sensing in Olfactory Receptor 78 Knockout Mice. FASEB Journal, 2019, 33, lb575.	0.5	Ο
20	Persistent HIFâ€1 Activation by Longâ€Term Intermittent Hypoxia. FASEB Journal, 2019, 33, 551.16.	0.5	0
21	H 2 S Contributes to Carotid Body Response to Hypoxia but Not Anoxia. FASEB Journal, 2019, 33, 551.14.	0.5	Ο
22	Phrenic Nerve and Carotid Body Responses to Hypoxia and CO 2 in Naked Mole Rats. FASEB Journal, 2019, 33, lb576.	0.5	0
23	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, lb577.	0.5	Ο
24	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, 551.17.	0.5	0
25	Activation of Lysine Demethylases (KDM's) by Intermittent Hypoxia. FASEB Journal, 2019, 33, 551.15.	0.5	0
26	Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell and Tissue Research, 2018, 372, 427-431.	2.9	27
27	Immunohistochemistry of the Carotid Body. Methods in Molecular Biology, 2018, 1742, 155-166.	0.9	2
28	The role of hypoxiaâ€inducible factors in carotid body (patho) physiology. Journal of Physiology, 2018, 596, 2977-2983.	2.9	57
29	DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. Journal of Physiology, 2018, 596, 3087-3100.	2.9	16
30	Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Research, 2018, 7, 1900.	1.6	22
31	Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Advances in Experimental Medicine and Biology, 2018, 1071, 109-114.	1.6	10
32	Measurement of Sensory Nerve Activity from the Carotid Body. Methods in Molecular Biology, 2018, 1742, 115-124.	0.9	1
33	Complementary roles of gasotransmitters CO and H ₂ S in sleep apnea. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1413-1418.	7.1	65
34	Systems biology of oxygen homeostasis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1382.	6.6	53
35	Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after longâ€term intermittent hypoxia. Journal of Physiology, 2017, 595, 63-77. 	2.9	53
36	Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1096-L1100.	2.9	61

#	Article	IF	CITATIONS
37	HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. ELife, 2017, 6, .	6.0	120
38	Oxygen Sensing by the Carotid Body: Past and Present. Advances in Experimental Medicine and Biology, 2017, 977, 3-8.	1.6	24
39	O2 and CO2 Detection by the Carotid and Aortic Bodies. , 2016, , 321-338.		7
40	Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBA¶tzinger Complex. Frontiers in Neuroscience, 2016, 10, 4.	2.8	55
41	CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. Journal of Neurophysiology, 2016, 115, 345-354.	1.8	13
42	Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Experimental Physiology, 2016, 101, 975-985.	2.0	55
43	H ₂ S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Science Signaling, 2016, 9, ra80.	3.6	39
44	Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. American Journal of Physiology - Cell Physiology, 2016, 310, C329-C336.	4.6	12
45	Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Archiv European Journal of Physiology, 2016, 468, 71-75.	2.8	43
46	Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget, 2016, 7, 76816-76826.	1.8	33
47	Neural regulation of hypoxia-inducible factors and redox state drives the pathogenesis of hypertension in a rodent model of sleep apnea. Journal of Applied Physiology, 2015, 119, 1152-1156.	2.5	56
48	Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respiratory Physiology and Neurobiology, 2015, 209, 115-119.	1.6	10
49	Ca _V 3.2 T-type Ca ²⁺ channels in H ₂ S-mediated hypoxic response of the carotid body. American Journal of Physiology - Cell Physiology, 2015, 308, C146-C154.	4.6	18
50	Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. Journal of Molecular Medicine, 2015, 93, 473-480.	3.9	43
51	Protein kinase G–regulated production of H ₂ S governs oxygen sensing. Science Signaling, 2015, 8, ra37.	3.6	101
52	Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia. , 2015, 5, 561-577.		87
53	Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medicine and Biology, 2015, 860, 195-199.	1.6	11
54	Oxygen Sensing and Homeostasis. Physiology, 2015, 30, 340-348.	3.1	154

#	Article	IF	CITATIONS
55	Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Advances in Experimental Medicine and Biology, 2015, 860, 1-8.	1.6	12
56	HIF-1α Activation by Intermittent Hypoxia Requires NADPH Oxidase Stimulation by Xanthine Oxidase. PLoS ONE, 2015, 10, e0119762.	2.5	77
57	Protein Kinase G Regulated H 2 S Governs Oxygen Sensing by the Carotid Body. FASEB Journal, 2015, 29, 682.2.	0.5	0
58	Carotid body response to intermittent hypoxia requires Ca v 3.2 Tâ€ŧype Ca 2+ channels. FASEB Journal, 2015, 29, 681.2.	0.5	0
59	Regulation of Insulin Metabolism by Intermittent Hypoxia. Molecular Mechanisms. FASEB Journal, 2015, 29, 682.5.	0.5	0
60	Nonâ€transcriptional Role of HIFâ€2α in Hypoxiaâ€Evoked hERG K + Channel Trafficking. FASEB Journal, 2015, 29, 681.1.	0.5	0
61	Ca _v 3.2 Tâ€type Ca ²⁺ Channels in H ₂ Sâ€Mediated Hypoxic Response of the Carotid Body. FASEB Journal, 2015, 29, 859.10.	0.5	0
62	Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochemical Journal, 2014, 458, 203-211.	3.7	36
63	The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Experimental Physiology, 2014, 99, 1089-1098.	2.0	47
64	Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. American Journal of Physiology - Cell Physiology, 2014, 306, C745-C752.	4.6	59
65	Gasotransmitter Regulation of Ion Channels: A Key Step in O ₂ Sensing By the Carotid Body. Physiology, 2014, 29, 49-57.	3.1	43
66	Inherent variations in CO-H ₂ S-mediated carotid body O ₂ sensing mediate hypertension and pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1174-1179.	7.1	71
67	Regulation of hypoxiaâ€inducible factorâ€Î± isoforms and redox state by carotid body neural activity in rats. Journal of Physiology, 2014, 592, 3841-3858.	2.9	75
68	TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma. Cell Reports, 2014, 7, 1343-1352.	6.4	146
69	Is insulin the new intermittent hypoxia?. Medical Hypotheses, 2014, 82, 730-735.	1.5	21
70	Intermittent Hypoxia: Mechanistic Pathways Influencing Cancer. , 2014, , 103-119.		1
71	ROS Signaling in Cardiovascular Dysfunction Associated with Obstructive Sleep Apnea. Respiratory Medicine, 2014, , 71-91.	0.1	0
72	Role of oxidative stressâ€induced endothelinâ€converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Experimental Physiology, 2013, 98, 1620-1630.	2.0	38

#	Article	IF	CITATIONS
73	Central and peripheral factors contributing to obstructive sleep apneas. Respiratory Physiology and Neurobiology, 2013, 189, 344-353.	1.6	82
74	Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1788-96.	7.1	73
75	Sensing hypoxia: physiology, genetics and epigenetics. Journal of Physiology, 2013, 591, 2245-2257.	2.9	115
76	Developmental programming of O2 sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respiratory Physiology and Neurobiology, 2013, 185, 105-109.	1.6	17
77	Impairment of pancreatic β ell function by chronic intermittent hypoxia. Experimental Physiology, 2013, 98, 1376-1385.	2.0	80
78	Xanthine Oxidase Mediates Hypoxia-Inducible Factor-2α Degradation by Intermittent Hypoxia. PLoS ONE, 2013, 8, e75838.	2.5	62
79	Intermittent Hypoxiaâ€induced hERG degradation involves ROS Activated Calpains. FASEB Journal, 2013, 27, 938.3.	0.5	0
80	Longâ€lasting increase in basal catecholamine secretion from neonatal adrenal medullary chromaffin cells by chronic intermittent hypoxia. FASEB Journal, 2013, 27, 938.8.	0.5	0
81	Endogenous H ₂ S is required for hypoxic sensing by carotid body glomus cells. American Journal of Physiology - Cell Physiology, 2012, 303, C916-C923.	4.6	62
82	Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2515-2520.	7.1	120
83	Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. Journal of Applied Physiology, 2012, 112, 187-196.	2.5	43
84	Sympatho-adrenal activation by chronic intermittent hypoxia. Journal of Applied Physiology, 2012, 113, 1304-1310.	2.5	85
85	Hydrogen Sulfide (H2S): A Physiologic Mediator of Carotid Body Response to Hypoxia. Advances in Experimental Medicine and Biology, 2012, 758, 109-113.	1.6	15
86	Adaptive and Maladaptive Cardiorespiratory Responses to Continuous and Intermittent Hypoxia Mediated by Hypoxia-Inducible Factors 1 and 2. Physiological Reviews, 2012, 92, 967-1003.	28.8	502
87	The Role of Hypoxia-Inducible Factors in Oxygen Sensing by the Carotid Body. Advances in Experimental Medicine and Biology, 2012, 758, 1-5.	1.6	26
88	Carbon monoxide (CO) and hydrogen sulfide (H2S) in hypoxic sensing by the carotid body. Respiratory Physiology and Neurobiology, 2012, 184, 165-169.	1.6	49
89	Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body. , 2012, 2, 141-219.		421
90	Gaseous messengers in oxygen sensing. Journal of Molecular Medicine, 2012, 90, 265-272.	3.9	65

#	Article	IF	CITATIONS
91	Gas biology: small molecular medicine. Journal of Molecular Medicine, 2012, 90, 213-215.	3.9	6
92	Intermittent Hypoxia Elicits a Rapid Upâ€Regulation of Cav3.2 Tâ€ŧype Ca2+ Channels Mediated by Reactive Oxygen Species. FASEB Journal, 2012, 26, 898.8.	0.5	0
93	Hydrogen sulfide mediates catecholamine secretion elicited by hypoxia in the carotid body. FASEB Journal, 2012, 26, 897.8.	0.5	0
94	Neuropeptide Y Signaling in Altered Catecholamine Synthesis during Intermittent Hypoxia. FASEB Journal, 2012, 26, 899.12.	0.5	0
95	Chronic Intermittent Hypoxia (CIH) alters respiratory rhythmogenesis within the preBA¶tzinger Complex. FASEB Journal, 2012, 26, 899.2.	0.5	О
96	Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. Journal of Applied Physiology, 2011, 111, 964-970.	2.5	42
97	Sensory plasticity of the carotid body: Role of reactive oxygen species and physiological significance. Respiratory Physiology and Neurobiology, 2011, 178, 375-380.	1.6	44
98	Hypoxiaâ€inducible factor 1 mediates increased expression of NADPH oxidaseâ€2 in response to intermittent hypoxia. Journal of Cellular Physiology, 2011, 226, 2925-2933.	4.1	177
99	Enhanced Neuropeptide Y Synthesis During Intermittent Hypoxia in the Rat Adrenal Medulla: Role of Reactive Oxygen Species–Dependent Alterations in Precursor Peptide Processing. Antioxidants and Redox Signaling, 2011, 14, 1179-1190.	5.4	18
100	Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3065-3070.	7.1	104
101	NADPH Oxidase 2 Mediates Intermittent Hypoxia-Induced Mitochondrial Complex I Inhibition: Relevance to Blood Pressure Changes in Rats. Antioxidants and Redox Signaling, 2011, 14, 533-542.	5.4	77
102	Institute for integrative physiology: resurrection of physiology at the University of Chicago. Physiologist, 2011, 54, 235-6.	0.0	0
103	Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respiratory Physiology and Neurobiology, 2010, 174, 156-161.	1.6	121
104	Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respiratory Physiology and Neurobiology, 2010, 174, 230-234.	1.6	51
105	Postâ€ŧranslational modification of glutamic acid decarboxylase 67 by intermittent hypoxia: evidence for the involvement of dopamine D1 receptor signaling. Journal of Neurochemistry, 2010, 115, 1568-1578.	3.9	11
106	NADPH Oxidase-Dependent Regulation of T-Type Ca ²⁺ Channels and Ryanodine Receptors Mediate the Augmented Exocytosis of Catecholamines from Intermittent Hypoxia-Treated Neonatal Rat Chromaffin Cells. Journal of Neuroscience, 2010, 30, 10763-10772.	3.6	68
107	H ₂ S mediates O ₂ sensing in the carotid body. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10719-10724.	7.1	344
108	Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells. American Journal of Physiology - Cell Physiology, 2010, 299, C381-C388.	4.6	18

#	Article	IF	CITATIONS
109	Redox Pioneer: Professor Gregg L. Semenza. Antioxidants and Redox Signaling, 2010, 13, 559-564.	5.4	3
110	Neonatal Intermittent Hypoxia Leads to Long-Lasting Facilitation of Acute Hypoxia-Evoked Catecholamine Secretion From Rat Chromaffin Cells. Journal of Neurophysiology, 2009, 101, 2837-2846.	1.8	50
111	Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1199-1204.	7.1	163
112	Pattern-Specific Sustained Activation of Tyrosine Hydroxylase by Intermittent Hypoxia: Role of Reactive Oxygen Species-Dependent Downregulation of Protein Phosphatase 2A and Upregulation of Protein Kinases. Antioxidants and Redox Signaling, 2009, 11, 1777-1789.	5.4	33
113	Intermittent hypoxia activates peptidylglycine α-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. Journal of Applied Physiology, 2009, 106, 12-19.	2.5	29
114	Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R735-R742.	1.8	86
115	Intermittent Hypoxiaâ€Mediated Plasticity of Acute O ₂ Sensing Requires Altered Redâ€Ox Regulation by HIFâ€1 and HIFâ€2. Annals of the New York Academy of Sciences, 2009, 1177, 162-168.	3.8	33
116	Contrasting Effects of Intermittent and Continuous Hypoxia on Low O2 Evoked Catecholamine Secretion from Neonatal Rat Chromaffin Cells. Advances in Experimental Medicine and Biology, 2009, 648, 345-349.	1.6	10
117	Reactive oxygen speciesâ€dependent down regulation of protein phosphatase contributes to tyrosine hydroxylase activation by intermittent hypoxia. FASEB Journal, 2009, 23, 1038.4.	0.5	0
118	Induction of HIFâ€1α expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca ²⁺ signaling, prolyl hydroxylases, and mTOR. Journal of Cellular Physiology, 2008, 217, 674-685.	4.1	294
119	Post-translational modification of proteins during intermittent hypoxia. Respiratory Physiology and Neurobiology, 2008, 164, 272-276.	1.6	33
120	Transcriptional responses to intermittent hypoxia. Respiratory Physiology and Neurobiology, 2008, 164, 277-281.	1.6	111
121	Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. Journal of Applied Physiology, 2008, 104, 1287-1294.	2.5	99
122	ROLE OF CAROTID BODIES IN CHRONIC INTERMITTENT HYPOXIA VOKED AUGMENTED LTF OF PHRENIC NERVE ACTIVITY. FASEB Journal, 2008, 22, 960.7.	0.5	1
123	Mechanisms of Mitochondrial Complex 1 Inhibition by Intermittent Hypoxia. FASEB Journal, 2008, 22, 960.6.	0.5	0
124	ACTIVATION OF NADPHâ€OXIDASE BY 5â€HT MEDIATES SENSORY LTF OF THE CAROTID BODY BY CHRONIC INTERMITTENT HYPOXIA. FASEB Journal, 2008, 22, 960.8.	0.5	1
125	Postâ€ŧranslational modification of peptidylglycine αâ€∎midating monooxygenase by intermittent hypoxia. FASEB Journal, 2008, 22, 960.4.	0.5	0
126	Mitochondrial ROS is involved in downregulation of hERG by hypoxia. FASEB Journal, 2008, 22, 960.5.	0.5	0

#	Article	IF	CITATIONS
127	Chronic intermittent hypoxia (CIH) alters the neuronal response to norepinephrine (NE) in the preâ€Bötzinger complex (preâ€BötC). FASEB Journal, 2008, 22, 755.1.	0.5	0
128	Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas. Respiratory Physiology and Neurobiology, 2007, 157, 148-153.	1.6	63
129	ROS Signaling in Systemic and Cellular Responses to Chronic Intermittent Hypoxia. Antioxidants and Redox Signaling, 2007, 9, 1397-1404.	5.4	121
130	HIF-1–Dependent Respiratory, Cardiovascular, and Redox Responses to Chronic Intermittent Hypoxia. Antioxidants and Redox Signaling, 2007, 9, 1391-1396.	5.4	126
131	Novel Role for Reactive Oxygen Species as Amplifiers of Intermittent Hypoxia. Focus on "Reactive Oxygen Species Mediate Central Cardiorespiratory Network Responses to Acute Intermittent Hypoxia― Journal of Neurophysiology, 2007, 97, 1877-1877.	1.8	5
132	Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Experimental Physiology, 2007, 92, 87-97.	2.0	121
133	Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Experimental Physiology, 2007, 92, 39-44.	2.0	89
134	Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. Journal of Physiology, 2007, 584, 313-319.	2.9	31
135	Chronic intermittent hypoxia (CIH) alters respiratory behavior in the Preâ€Bötzinger complex (PBC). FASEB Journal, 2007, 21, A557.	0.5	0
136	Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. Journal of Neurochemistry, 2006, 96, 694-705.	3.9	54
137	O2sensing at the mammalian carotid body: why multiple O2sensors and multiple transmitters?. Experimental Physiology, 2006, 91, 17-23.	2.0	137
138	Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. Journal of Physiology, 2006, 575, 229-239.	2.9	162
139	Heterozygous HIFâ€1α deficiency impairs carotid bodyâ€mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. Journal of Physiology, 2006, 577, 705-716.	2.9	339
140	5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. Journal of Physiology, 2006, 576, 289-295.	2.9	73
141	Decreased barosensitivity in rats conditioned with intermittent hypoxia. FASEB Journal, 2006, 20, A790.	0.5	0
142	Chronic intermittent hypoxia induces hypoxic sensitivity in adult rat adrenal medulla via oxidative stress. FASEB Journal, 2006, 20, A789.	0.5	0
143	Regional differences in tyrosine hydroxylase activation in rat brainstem by chronic intermittent hypoxia: Role of serine phosphorylation. FASEB Journal, 2006, 20, .	0.5	0
144	Mechanism of activation of peptidylglycine alphaâ€amidating monooxygenase by intermittent hypoxia. FASEB Journal, 2006, 20, A789.	0.5	0

#	Article	IF	CITATIONS
145	Comparison between neonatal and adult carotid body responses to chronic intermittent hypoxia. FASEB Journal, 2006, 20, A789.	O.5	1
146	Regulation of gene expression by HIF-1. Novartis Foundation Symposium, 2006, 272, 2-8; discussion 8-14, 33-6.	1.1	64
147	Reactive oxygen species facilitate oxygen sensing. Novartis Foundation Symposium, 2006, 272, 95-9; discussion 100-5, 131-40.	1.1	7
148	CARDIOVASCULAR ALTERATIONS BY CHRONIC INTERMITTENT HYPOXIA: IMPORTANCE OF CAROTID BODY CHEMOREFLEXES. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 447-449.	1.9	131
149	Ca2+/Calmodulin Kinase-dependent Activation of Hypoxia Inducible Factor 1 Transcriptional Activity in Cells Subjected to Intermittent Hypoxia. Journal of Biological Chemistry, 2005, 280, 4321-4328.	3.4	208
150	Cellular and Molecular Mechanisms Associated with Carotid Body Adaptations to Chronic Hypoxia. High Altitude Medicine and Biology, 2005, 6, 112-120.	0.9	47
151	Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respiratory Physiology and Neurobiology, 2005, 145, 23-31.	1.6	21
152	Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. Journal of Applied Physiology, 2004, 97, 2020-2025.	2.5	102
153	Detection of Oxygen Sensing During Intermittent Hypoxia. Methods in Enzymology, 2004, 381, 107-120.	1.0	6
154	Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. Journal of Applied Physiology, 2004, 96, 1236-1242.	2.5	201
155	Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biological Chemistry, 2004, 385, 217-21.	2.5	101
156	Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. Journal of Physiology, 2004, 557, 773-783.	2.9	129
157	Peripheral chemoreceptors in health and disease. Journal of Applied Physiology, 2004, 96, 359-366.	2.5	154
158	Facilitation of dopamine and acetylcholine release by intermittent hypoxia in PC12 cells: involvement of calcium and reactive oxygen species. Journal of Applied Physiology, 2004, 96, 1206-1215.	2.5	32
159	Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10073-10078.	7.1	395
160	Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. Journal of Applied Physiology, 2003, 94, 2342-2349.	2.5	146
161	Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. Journal of Applied Physiology, 2003, 95, 536-544.	2.5	47
162	Systemic and Cellular Responses to Intermittent Hypoxia: Evidence for Oxidative Stress and Mitochondrial Dysfunction. Advances in Experimental Medicine and Biology, 2003, 536, 559-564.	1.6	42

#	Article	IF	CITATIONS
163	Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1Â. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 821-826.	7.1	243
164	Ventilatory Changes During Intermittent Hypoxia: Importance of Pattern and Duration. High Altitude Medicine and Biology, 2002, 3, 195-204.	0.9	62
165	Invited Review: Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. Journal of Applied Physiology, 2001, 90, 1986-1994.	2.5	241
166	Intermittent hypoxia: cell to system. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L524-L528.	2.9	109
167	Oxygen sensing by the carotid body chemoreceptors. Journal of Applied Physiology, 2000, 88, 2287-2295.	2.5	301
168	L-type Ca ²⁺ channel activation regulates induction of c- <i>fos</i> transcription by hypoxia. Journal of Applied Physiology, 2000, 88, 1898-1906.	2.5	40
169	Augmentation of L-Type Calcium Current by Hypoxia in Rabbit Carotid Body Glomus Cells: Evidence for a PKC-Sensitive Pathway. Journal of Neurophysiology, 2000, 84, 1636-1644.	1.8	44
170	Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. Journal of Applied Physiology, 2000, 88, 1496-1508.	2.5	60
171	Nitric Oxide Inhibits L-Type Ca ²⁺ Current in Glomus Cells of the Rabbit Carotid Body Via a cGMP-Independent Mechanism. Journal of Neurophysiology, 1999, 81, 1449-1457.	1.8	121
172	NO and CO as second messengers in oxygen sensing in the carotid body. Respiration Physiology, 1999, 115, 161-168.	2.7	140
173	Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. Journal of Physiology, 1998, 511, 273-287.	2.9	118
174	Endogenous carbon monoxide in control of respiration. Respiration Physiology, 1998, 114, 57-64.	2.7	49
175	Ca2+ Current in Rabbit Carotid Body Glomus Cells Is Conducted by Multiple Types of High-Voltage–Activated Ca2+ Channels. Journal of Neurophysiology, 1997, 78, 2467-2474.	1.8	56
176	Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Molecular Brain Research, 1996, 43, 341-346.	2.3	79
177	Carbon Monoxide and Carotid Body Chemoreception. Advances in Experimental Medicine and Biology, 1996, 410, 341-344.	1.6	10
178	Nitric Oxide Synthase Activity in Guinea Pig Ventricular Myocytes Is Not Involved in Muscarinic Inhibition of cAMP-Regulated Ion Channels. Circulation Research, 1996, 78, 925-935.	4.5	28
179	Nitric oxide in the sensory function of the carotid body. Brain Research, 1993, 625, 16-22.	2.2	153
180	Functional Role of Substance P for Respiratory Control during Development. Annals of the New York Academy of Sciences, 1991, 632, 48-52.	3.8	11

#	Article	IF	CITATIONS
181	Reactive Oxygen Species Facilitate Oxygen Sensing. Novartis Foundation Symposium, 0, , 95-105.	1.1	15
182	PROTEIN PHOSPHATASE 1 REGULATES REACTIVE OXYGEN SPECIES DEPENDENT DEGRADATION OF HISTONE DEACETYLASE 5 BY INTERMITTENT HYPOXIA. American Journal of Physiology - Cell Physiology, 0, , .	4.6	2