Shengbiao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sensing, 2018, 10, 370.	4.0	93
2	PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sensing of Environment, 2018, 215, 184-198.	11.0	58
3	Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest. Remote Sensing of Environment, 2020, 246, 111865.	11.0	56
4	Modeling Canopy Reflectance Over Sloping Terrain Based on Path Length Correction. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4597-4609.	6.3	51
5	Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171, 36-48.	11.1	51
6	Modeling Anisotropic Reflectance Over Composite Sloping Terrain. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3903-3923.	6.3	46
7	Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain. Remote Sensing, 2018, 10, 278.	4.0	32
8	Beyond green environments: Multi-scale difference in human exposure to greenspace in China. Environment International, 2022, 166, 107348.	10.0	29
9	The definition of remotely sensed reflectance quantities suitable for rugged terrain. Remote Sensing of Environment, 2019, 225, 403-415.	11.0	25
10	Modeling Discrete Forest Anisotropic Reflectance Over a Sloped Surface With an Extended GOMS and SAIL Model. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 944-957.	6.3	25
11	Characterization of Remote Sensing Albedo Over Sloped Surfaces Based on DART Simulations and In Situ Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8599-8622.	3.3	24
12	Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sensing of Environment, 2021, 267, 112723.	11.0	24
13	Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sensing of Environment, 2021, 264, 112604.	11.0	21
14	Spatiotemporal Variability of Land Surface Albedo over the Tibet Plateau from 2001 to 2019. Remote Sensing, 2020, 12, 1188.	4.0	19
15	Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types. New Phytologist, 2021, 232, 134-147.	7.3	19
16	A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation(China), 2021, 2, 100154.	9.1	19
17	Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations. Remote Sensing, 2018, 10, 1508.	4.0	17
18	Quantifying leaf optical properties with spectral invariants theory. Remote Sensing of Environment, 2021, 253, 112131.	11.0	17

Shengbiao Wu

#	Article	IF	CITATIONS
19	GOFP: A Geometric-Optical Model for Forest Plantations. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 5230-5241.	6.3	16
20	Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sensing, 2015, 7, 13410-13435.	4.0	15
21	Algorithms for Calculating Topographic Parameters and Their Uncertainties in Downward Surface Solar Radiation (DSSR) Estimation. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1149-1153.	3.1	15
22	Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 19-33.	11.1	15
23	An Iterative BRDF/NDVI Inversion Algorithm Based on <italic>A Posteriori</italic> Variance Estimation of Observation Errors. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6481-6496.	6.3	12
24	Impacts of DEM Geolocation Bias on Downward Surface Shortwave Radiation Estimation Over Clear-Sky Rugged Terrain: A Case Study in Dayekou Basin, China. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 10-14.	3.1	12
25	A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China. Remote Sensing, 2018, 10, 156.	4.0	11
26	Derivation of Kernel Functions for Kernel-Driven Reflectance Model Over Sloping Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 396-409.	4.9	11
27	Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on understory air and soil temperatures at the global scale. Agricultural and Forest Meteorology, 2021, 308-309, 108615.	4.8	9
28	Impacts and Contributors of Representativeness Errors of \$In~Situ\$ Albedo Measurements for the Validation of Remote Sensing Products. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9740-9755.	6.3	8
29	Improving Kernel-Driven BRDF Model for Capturing Vegetation Canopy Reflectance With Large Leaf Inclinations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2639-2655.	4.9	8
30	A new object-class based gap-filling method for PlanetScope satellite image time series. Remote Sensing of Environment, 2022, 280, 113136.	11.0	8
31	Remote Sensing of Seasonal Climatic Constraints on Leaf Phenology Across Pantropical Evergreen Forest Biome. Earth's Future, 2021, 9, e2021EF002160.	6.3	7
32	Estimating Surface BRDF/Albedo Over Rugged Terrain Using an Extended Multisensor Combined BRDF Inversion (EMCBI) Model. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	7
33	March SST reconstruction in the South China Sea based on Pinus massoniana tree-ring widths from Changting, Fujian, in Southeast China since 1893†CE. Marine Micropaleontology, 2018, 145, 21-27.	1.2	4
34	Sloping Surface Reflectance: The Best Option for Satellite-Based Albedo Retrieval Over Mountainous Areas. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	3
35	An Improved Kernel-Driven BRDF Model Coupled with Topography: KDCT. , 2018, , .		2
36	PLC-C: An Integrated Method for Sentinel-2 Topographic and Angular Normalization. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 1446-1450.	3.1	2

SHENGBIAO WU

#	Article	IF	CITATIONS
37	An Optical–Thermal Surface–Atmosphere Radiative Transfer Model Coupling Framework With Topographic Effects. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	2
38	Extending the GOSAILT Model to Simulate Sparse Woodland Bi-Directional Reflectance with Soil Reflectance Anisotropy Consideration. Remote Sensing, 2022, 14, 1001.	4.0	2
39	Erratum to "algorithms for calculating topographic parameters and their uncertainties in downward surface solar radiation estimation―[aug 17 1149-1153]. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 160-160.	3.1	1
40	Modeling anisotropic bidirectional reflectance of sloping forest. , 2017, , .		0
41	Surface Albedo Measurement Comparisons over Sloping Terrain with Two Different Radiometer Placements. , 2018, , .		0