Subrata Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9366652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	[2+2] Photochemical Cycloaddition in Organic Synthesis. European Journal of Organic Chemistry, 2020, 1310-1326.	2.4	119
2	Sequential ring-closing enyne metathesis and intramolecular Diels–Alder reaction: an approach to the synthesis of the core structure of galiellalactone. Journal of Chemical Sciences, 2020, 132, 1.	1.5	2
3	Domino ring-opening–ring-closing enyne metathesis vs enyne metathesis of norbornene derivatives with alkynyl side chains. Construction of condensed polycarbocycles. Beilstein Journal of Organic Chemistry, 2018, 14, 2708-2714.	2.2	13
4	Total Synthesis of the Marine Polyketide (â^')-Gracilioether F. Journal of Organic Chemistry, 2017, 82, 7675-7682.	3.2	9
5	Influence of alkene substituent in dictating the reaction course to form carbocycles or oxacycles during ring closing metathesis of acyclic trienes. Journal of Chemical Sciences, 2017, 129, 1873-1881.	1.5	1
6	A simple approach to the construction of the core structure present in bielschowskysin and hippolachnin A. Journal of Chemical Sciences, 2016, 128, 1019-1023.	1.5	7
7	A convenient access to the tricyclic core structure of hippolachnin A. Tetrahedron Letters, 2016, 57, 29-31.	1.4	17
8	Studies towards the synthesis of bielschowskysin. Construction of the highly functionalized bicyclo[3.2.0]heptane segment. Organic and Biomolecular Chemistry, 2015, 13, 1846-1859.	2.8	17
9	Asymmetric synthesis of a functionalized tricyclo[6.2.0.02,6]decane ring system present in kelsoene and poduran. Journal of Chemical Sciences, 2014, 126, 1875-1882.	1.5	2
10	Influence of ring fusion stereochemistry on the stereochemical outcome in photo-induced Diels–Alder reaction of fused bicycloheptenone derivatives. Tetrahedron, 2014, 70, 9783-9790.	1.9	5
11	An expeditious approach to highly functionalized angularly fused 5–5–n ring systems through ring opening–ring closing metathesis of norbornene derivatives. Tetrahedron Letters, 2014, 55, 3538-3540.	1.4	11
12	Intramolecular Diels–Alder route to angularly oxygenated hydrindanes. Synthesis of the functionalized bicylic skeleton present in galiellalactone. Tetrahedron, 2013, 69, 7956-7963.	1.9	4
13	Stereocontrolled approach to the highly functionalized bicyclo[3.2.0] heptane core of bielschowskysin through intramolecular Cu(I)-catalyzed [2+2] photocycloaddition. Tetrahedron Letters, 2012, 53, 6830-6833.	1.4	23
14	Domino Ring-Opening Metathesis–Ring-Closing Metathesis of Bicyclo[2.2.2]octene Derivatives: Scope and Limitations. Journal of Organic Chemistry, 2012, 77, 6345-6350.	3.2	29
15	Unprecedented influence of remote substituents on reactivity and stereoselectivity in Cu(i)-catalysed [2 + 2] photocycloaddition. An approach towards the synthesis of tricycloclavulone. Organic and Biomolecular Chemistry, 2011, 9, 4903.	2.8	14
16	Synthetic studies toward nortriterpenoids of schisandraceae family. Approach to the construction of functionalized C/D and A/B ring units of micrandilactone C and rubrifloradilactone B. Tetrahedron Letters, 2011, 52, 6473-6476.	1.4	26
17	An efficient stereoselective route to the construction of tricyclic core structure towards the synthesis of the sesquiterpenes of the seco-prezizaane family. Tetrahedron Letters, 2011, 52, 1942-1945.	1.4	13
18	Effect of ring fusion stereochemistry on double bond geometry. Unexpected formation of nine-membered cyclic ether with E-configurated double bond through RCM. Tetrahedron, 2010, 66, 9159-9164.	1.9	6

SUBRATA GHOSH

#	Article	IF	CITATIONS
19	Expedient route to CDE ring system of schintrilactones through tandem ROM–RCM of a norbornene derivative. Tetrahedron Letters, 2010, 51, 2754-2757.	1.4	28
20	Unprecedented copper(I)-catalyzed photochemical reaction of diethyl ether with vicinal diols and ketals. Tetrahedron Letters, 2010, 51, 4452-4454.	1.4	6
21	An asymmetric route to total synthesis of the furano lignan (+)-veraguensin. Tetrahedron Letters, 2010, 51, 6924-6927.	1.4	15
22	An asymmetric route to 2,3-epoxy-syn-1,4-cyclohexane diol derivatives using ring closing metathesis (RCM). Journal of Chemical Sciences, 2010, 122, 791-800.	1.5	3
23	Synthetic Studies on Schisandra nortriterpenoids. Stereocontrolled Synthesis of Enantiopure C-5-epi ABC Ring Systems of Micrandilactone A and Lancifodilactone G Using RCM. Journal of Organic Chemistry, 2010, 75, 4192-4200.	3.2	46
24	A direct route to angularly substituted hydrindanes. Formal synthesis of bakkenolide-A and synthesis of an advanced intermediate to umbellactal. Tetrahedron, 2009, 65, 9202-9210.	1.9	20
25	A new approach to A/B ring analogue of eleutherobin and sarcodictyns through a sequence of highly diastereofaceselective Diels–Alder reaction and ring opening–ring closing metathesis (RO–RCM). Tetrahedron Letters, 2009, 50, 3063-3066.	1.4	17
26	Expedient asymmetric synthesis of a functionalized 5-7-6 fused tricyclic skeleton present in caribenol A through ring opening-ring closing metathesis of a norbornene derivative. Tetrahedron Letters, 2009, 50, 5277-5279.	1.4	17
27	Enantiodivergent synthesis of (â^')-methylenolactocin and (+)-methylenolactocin from d-mannitol. Tetrahedron Letters, 2009, 50, 7102-7104.	1.4	16
28	Synthesis of Fused Cyclic Systems Containing Medium-Sized Rings through Tandem ROM-RCM of Norbornene Derivatives Embedded in a Carbohydrate Template. Journal of Organic Chemistry, 2009, 74, 1957-1963.	3.2	31
29	A simple route to enantiopure bis-lactones: synthesis of both enantiomers of epi-nor-canadensolide, nor-canadensolide. Tetrahedron, 2008, 64, 2359-2368.	1.9	11
30	Rapid assembly of the functionalized tricyclic core of umbellactal through domino metathesis involving ROM-RCM of a norbornene derivative. Tetrahedron Letters, 2008, 49, 1133-1136.	1.4	21
31	A stereocontrolled approach for the synthesis of 2,5-diaryl-3,4-disubstituted furano lignans through a highly diastereoselective aldol condensation of an ester enolate with an α-chiral center: total syntheses of (â^')-talaumidin and (âr')-virgatusin. Tetrahedron Letters, 2008, 49, 3433-3436.	1.4	28
32	A simple route to the syntheses of both enantiomers of trans-oak lactone and (+)-cis-oak lactone. Tetrahedron Letters, 2008, 49, 5424-5426.	1.4	7
33	A novel asymmetric approach to a densely functionalized lactarane ring system through a domino ring opening–ring closing metathesis of a norbornene derivative. Tetrahedron Letters, 2008, 49, 5649-5651.	1.4	22
34	Domino Metathesis Involving ROM-RCM of Substituted Norbornenes. Rapid Access to Densely Functionalized Tricyclic Bridged and Condensed Ring Systems. Organic Letters, 2007, 9, 2537-2540.	4.6	53
35	The first total synthesis of sequosempervirin A through an orthoester Claisen rearrangement—ring closing metathesis sequence. Tetrahedron Letters, 2007, 48, 3355-3358.	1.4	17
36	A Convenient Approach for Access to Both Carbapentofuranoses and Carbahexopyranoses. Stereocontrolled Synthesis of Enantiopure Carba-d-ribofuranoses, Carba-d-arabinofuranoses and Carba-l-gulopyranose. Journal of Organic Chemistry, 2006, 71, 9687-9694.	3.2	30

SUBRATA GHOSH

#	Article	IF	CITATIONS
37	Stereodivergent Approach to the Asymmetric Synthesis of Bacillariolides:  A Formal Synthesis ofent-Bacillariolide II. Organic Letters, 2006, 8, 3781-3784.	4.6	19
38	Alkoxy group facilitated ring closing metathesis (RCM) of acyclic 1,6-dienes. Journal of Molecular Catalysis A, 2006, 254, 85-92.	4.8	10
39	Factors influencing ring closure through olefin metathesis – A perspective. Journal of Chemical Sciences, 2006, 118, 223-235.	1.5	41
40	Convenient Route to Both Enantiomers of a Highly Functionalized Trans-Disubstituted Cyclopentene. Synthesis of the Carbocyclic Core of the Nucleoside BCA. Journal of Organic Chemistry, 2005, 70, 4199-4202.	3.2	37
41	Alkoxy group facilitated ring closing metathesis (RCM) of acyclic 1,6-dienes. Convenient synthesis of non-racemic highly substituted cyclopentenols. Tetrahedron Letters, 2004, 45, 6457-6460.	1.4	27
42	Copper(I)-Catalyzed Intramolecular Asymmetric [2 + 2] Photocycloaddition. Synthesis of Both Enantiomers of Cyclobutane Derivatives. Organic Letters, 2004, 6, 1903-1905.	4.6	39
43	Intramolecular [2 + 2] Photocycloaddition of Alkenes Incorporated in a Carbohydrate Template. Synthesis of Enantiopure Bicyclo[3.2.0]heptanes and -[6.3.0]undecanes. Journal of Organic Chemistry, 2003, 68, 3981-3989.	3.2	35
44	Enantiospecific synthesis of (+)-herbertene. Tetrahedron Letters, 2002, 43, 1313-1315.	1.4	18
45	A new stereoselective route to the carbocyclic nucleoside cyclobut-A. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3013-3016.	1.3	18
46	Intramolecular [2+2] photocycloaddition of 1,6-dienes incorporated in a furanose ring. Unusual formation of cis-syn-cis 6-oxatricyclo[6.2.0.03,7]decanes. Tetrahedron Letters, 2001, 42, 5997-6000.	1.4	12
47	Stereoselective Preparation of Enantiomerically Pure Annulated Carbohydrates Using Ring-Closing Metathesis. Journal of Organic Chemistry, 2000, 65, 482-493.	3.2	70
48	The Copper(I) Catalysed [2 + 2] Intramolecular Photoannulation of Carbohydrate Derivatives. Synlett, 1999, 1003-1005.	1.8	19
49	Stereocontrolled total synthesis of (±)-β-necrodol. Tetrahedron Letters, 1999, 40, 4401-4402.	1.4	24
50	Intramolecular [2+2] photocycloaddition for the direct stereoselective synthesis of cyclobutane fused Î ³ -lactols. Tetrahedron Letters, 1999, 40, 6693-6694.	1.4	18
51	Stereocontrolled approach to highly substituted cyclopentanones. Application in a formal synthesis of Δ9(12)-capnellene. Tetrahedron, 1998, 54, 1789-1800.	1.9	32
52	A Facile Access to Densely Functionalized Substituted Cyclopentanes and Spiro Cyclopentanes. Carbocation Stabilization Directed Bond Migration in Rearrangement of Cyclobutanes. Journal of Organic Chemistry, 1997, 62, 5211-5214.	3.2	28
53	Strategic use of retro Diels-Alder reaction in the construction of β-carboxy-α-methylene-γ-lactones. Total synthesis of methylenolactocin and protolichesterinic acid. Tetrahedron, 1997, 53, 17335-17342.	1.9	29
54	Intramolecular [2+2] photocycloaddition — cyclobutane rearrangement. A novel stereocontrolled approach to highly substituted cyclopentanones. Tetrahedron Letters, 1996, 37, 2073-2076.	1.4	22

SUBRATA GHOSH

#	Article	IF	CITATIONS
55	A short synthesis of (\hat{A}_{\pm}) - methylenolactocin. Tetrahedron Letters, 1996, 37, 4809-4810.	1.4	20
56	Synthesis of Methyl-6-methyl Tricyclo[5.2.1.0 ^{2,6}]decan-9-one-2-carboxylate: Potential Intermediate to Isocomene and Cuprenolide. Synthetic Communications, 1995, 25, 3713-3722.	2.1	1
57	Reaction of bis-Lactone in Rigid Polycycles with Alkyl Lithiums. Synthesis of Novel Oxa-Cace Compounds. Synthetic Communications, 1995, 25, 3723-3728.	2.1	2
58	Regioselectivity and Stereospecificity in a Contrastereoelectronically Controlled Pinacol Rearrangement of Alkoxycyclobutane Derivatives. A Novel Route to Vicinally Substituted Cyclopentanones. Journal of Organic Chemistry, 1995, 60, 2526-2531.	3.2	40
59	Photocycloaddition-cyclobutane rearrangement to spiro cyclopentanones: application in a formal synthesis of (±)-α-cedrene. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2635-2641.	0.9	28
60	A convenient route to vicinally substituted cyclopentanones via pinacol type rearrangement of cyclobutanes. Tetrahedron Letters, 1993, 34, 4565-4566.	1.4	22
61	A novel route to usefully functionalised spiro[n.4] systems; application to a formal synthesis of (±)-α-cedrene. Journal of the Chemical Society Chemical Communications, 1993, , 783-784.	2.0	20
62	A New Route to the Synthesis of 7-Functionalised Bicyclo[2.2.1]Heptane Derivatives. Synthetic Communications, 1991, 21, 2129-2136.	2.1	5
63	Bicyclo[2.2.1]Heptane as Cyclopentane Precursor. Part 3 ¹ . A Convenient Route to [3.3.3]Propellanes. Synthetic Communications, 1989, 19, 3191-3197.	2.1	14
64	An expeditious route to trans fused 5–7–6 and 6–7–6 carbocycles through photoisomerisation-cycloaddition of benzocycloheptenone. Tetrahedron, 1988, 44, 6235-6240.	1.9	9
65	Hydroxyl-directed regioselective monodemethylation of polymethoxyarenes. Journal of Organic Chemistry, 1987, 52, 1072-1078.	3.2	45
66	Copper(I) catalysis of olefin photoreactions. 15. Synthesis of cyclobutanated butyrolactones via copper(I)-catalyzed intermolecular photocycloadditions of homoallyl vinyl or diallyl ethers. Journal of Organic Chemistry, 1987, 52, 83-90.	3.2	45
67	Photo-Induced diels-alder reaction. A novel route to trans fused benzobicyclo-[5.3.0]decanes and [5.4.0]undecanes. Tetrahedron Letters, 1985, 26, 5325-5326.	1.4	12
68	Copper(I) catalysis of olefin photoreactions. 10. Synthesis of multicyclic carbon networks by photobicyclization. Journal of Organic Chemistry, 1982, 47, 829-836.	3.2	31
69	Copper(I) catalysis of olefin photoreactions. 9. Photobicyclization of .alpha, .beta, and .gammaalkenylallyl alcohols. Journal of the American Chemical Society, 1982, 104, 998-1007.	13.7	66