
Denise Wootten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9366063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	12.8	30
2	Secretin amino-terminal structure-activity relationships and complementary mutagenesis at the site of docking to the secretin receptor. Molecular Pharmacology, 2022, , MOLPHARM-AR-2022-000502.	2.3	0
3	A structural basis for amylin receptor phenotype. Science, 2022, 375, eabm9609.	12.6	28
4	Implications of ligand-receptor binding kinetics on GLP-1R signalling. Biochemical Pharmacology, 2022, 199, 114985.	4.4	5
5	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	8.0	24
6	Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chemical Reviews, 2022, 122, 13989-14017.	47.7	17
7	Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. British Journal of Pharmacology, 2022, 179, 4617-4639.	5.4	18
8	AM833 Is a Novel Agonist of Calcitonin Family G Protein–Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 417-440.	2.5	27
9	Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science, 2021, 372, .	12.6	57
10	Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Frontiers in Endocrinology, 2021, 12, 684656.	3.5	10
11	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e3001295.	5.6	41
12	Thermo Scientificâ"¢ Glacios Cryo-TEM: A Versatile 200 kV Tool for Structure-Based Drug Discovery. Microscopy and Microanalysis, 2021, 27, 3256-3258.	0.4	1
13	Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports, 2021, 36, 109374.	6.4	27
14	Routine sub-2.5 à cryo-EM structure determination of GPCRs. Nature Communications, 2021, 12, 4333.	12.8	37
15	Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Frontiers in Molecular Biosciences, 2021, 8, 720561.	3.5	5
16	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	3.3	29
17	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	27.8	84
18	Chemical Synthesis and Characterization of a Nonfibrillating Glycoglucagon. Bioconjugate Chemistry, 2021, 32, 2148-2153.	3.6	2

#	Article	IF	CITATIONS
19	Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochemical Pharmacology, 2021, 192, 114715.	4.4	5
20	Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochemical and Biophysical Research Communications, 2021, 578, 84-90.	2.1	14
21	The structural basis of class B GPCR activation and signalling. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-JAL.	0.0	0
22	Discovery of a Positive Allosteric Modulator of Cholecystokinin Action at CCK1R in Normal and Elevated Cholesterol. Frontiers in Endocrinology, 2021, 12, 789957.	3.5	3
23	Structural Basis for Allosteric Modulation of Class B G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2020, 60, 89-107.	9.4	26
24	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	27.8	119
25	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
26	Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochemical Pharmacology, 2020, 180, 114150.	4.4	23
27	The metabolic effects of mirabegron are mediated primarily by β 3 â€adrenoceptors. Pharmacology Research and Perspectives, 2020, 8, e00643.	2.4	9
28	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	12.8	46
29	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	3.4	31
30	Structural basis of G _s and G _i recognition by the human glucagon receptor. Science, 2020, 367, 1346-1352.	12.6	117
31	Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacology and Translational Science, 2020, 3, 246-262.	4.9	28
32	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	4.9	71
33	Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Molecular Cell, 2020, 77, 669-680.e4.	9.7	70
34	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	9.7	92
35	Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochemical Pharmacology, 2020, 177, 114001.	4.4	37
36	Rational development of a high-affinity secretin receptor antagonist. Biochemical Pharmacology, 2020, 177, 113929.	4.4	7

#	Article	IF	CITATIONS
37	O-GlcNAc Engineering of GPCR Peptide-Agonists Improves Their Stability and in Vivo Activity. Journal of the American Chemical Society, 2019, 141, 14210-14219.	13.7	35
38	Use of Backbone Modification To Enlarge the Spatiotemporal Diversity of Parathyroid Hormone Receptor-1 Signaling via Biased Agonism. Journal of the American Chemical Society, 2019, 141, 14486-14490.	13.7	23
39	Molecular Basis of Action of a Small-Molecule Positive Allosteric Modulator Agonist at the Type 1 Cholecystokinin Holoreceptor. Molecular Pharmacology, 2019, 95, 245-259.	2.3	5
40	Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacology and Translational Science, 2019, 2, 183-197.	4.9	8
41	Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer, 2019, 19, 157.	2.6	15
42	The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacology and Translational Science, 2019, 2, 31-51.	4.9	38
43	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	27.8	263
44	Vascular and molecular pharmacology of the metabolically stable CGRP analogue, SAX. European Journal of Pharmacology, 2018, 829, 85-92.	3.5	15
45	Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochemical Pharmacology, 2018, 148, 111-129.	4.4	19
46	Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. Journal of Biological Chemistry, 2018, 293, 9370-9387.	3.4	43
47	Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochemical Pharmacology, 2018, 150, 214-244.	4.4	24
48	Rules of Engagement: GPCRs and G Proteins. ACS Pharmacology and Translational Science, 2018, 1, 73-83.	4.9	93
49	Glucagon-like peptide-1 receptor internalisation controls spatiotemporal signalling mediated by biased agonists. Biochemical Pharmacology, 2018, 156, 406-419.	4.4	45
50	Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561, 492-497.	27.8	210
51	Differential engagement of polar networks in the glucagon-like peptide 1 receptor by endogenous variants of the glucagon-like peptide 1. Biochemical Pharmacology, 2018, 156, 223-240.	4.4	6
52	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	4.9	96
53	Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nature Reviews Molecular Cell Biology, 2018, 19, 638-653.	37.0	457
54	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	27.8	274

#	Article	IF	CITATIONS
55	Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chemical Reviews, 2017, 117, 111-138.	47.7	91
56	What determines the magnitude of cellular response for activation of G protein-coupled receptors?. Cell Cycle, 2017, 16, 392-394.	2.6	0
57	Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.	27.8	424
58	Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochemical Pharmacology, 2017, 136, 99-108.	4.4	53
59	Coexpressed Class B G Protein–Coupled Secretin and GLP-1 Receptors Self- and Cross-Associate: Impact on Pancreatic Islets. Endocrinology, 2017, 158, 1685-1700.	2.8	6
60	Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE, 2017, 12, e0174719.	2.5	11
61	Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Computational Biology, 2017, 13, e1005819.	3.2	8
62	Monotreme glucagon-like peptide-1 in venom and gut: one gene – two very different functions. Scientific Reports, 2016, 6, 37744.	3.3	12
63	The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochemical Society Transactions, 2016, 44, 582-588.	3.4	28
64	Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy. Cell, 2016, 167, 739-749.e11.	28.9	113
65	Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochemical Pharmacology, 2016, 118, 68-87.	4.4	41
66	Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacological Reviews, 2016, 68, 954-1013.	16.0	252
67	β-Arrestin-Biased Agonists of the GLP-1 Receptor from β-Amino Acid Residue Incorporation into GLP-1 Analogues. Journal of the American Chemical Society, 2016, 138, 14970-14979.	13.7	69
68	The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell, 2016, 165, 1632-1643.	28.9	126
69	Prediction of Loops in G Protein-Coupled Receptor Homology Models: Effect of Imprecise Surroundings and Constraints. Journal of Chemical Information and Modeling, 2016, 56, 671-686.	5.4	7
70	A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Molecular Pharmacology, 2016, 89, 335-347.	2.3	56
71	Differential Impact of Amino Acid Substitutions on Critical Residues of the Human Glucagon-Like Peptide-1 Receptor Involved in Peptide Activity and Small-Molecule Allostery. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 52-63.	2.5	18
72	Structural and functional insights into the juxtamembranous aminoâ€ŧerminal tail and extracellular loop regions of class <scp>B GPCRs</scp> . British Journal of Pharmacology, 2014, 171, 1085-1101.	5.4	25

#	Article	IF	CITATIONS
73	Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by <scp>GLP</scp> â€ <scp>1R</scp> activation. British Journal of Pharmacology, 2014, 171, 1114-1128.	5.4	60
74	Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 630-644.	46.4	396
75	Meet the B family. Nature, 2013, 499, 417-418.	27.8	5
76	Recent advances in understanding GLP-1R (glucagon-like peptide-1 receptor) function. Biochemical Society Transactions, 2013, 41, 172-179.	3.4	59
77	Receptor activityâ€modifying proteinâ€dependent impairment of calcitonin receptor splice variant Δ(1–47) <scp>hCT</scp> _(a) function. British Journal of Pharmacology, 2013, 168, 644-657.	5.4	42
78	Receptor activity modifying proteins (<scp>RAMPs</scp>) interact with the <scp>VPAC</scp> ₂ receptor and <scp>CRF</scp> ₁ receptors and modulate their function. British Journal of Pharmacology, 2013, 168, 822-834.	5.4	71
79	Differential Activation and Modulation of the Glucagon-Like Peptide-1 Receptor by Small Molecule Ligands. Molecular Pharmacology, 2013, 83, 822-834.	2.3	77
80	Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery. Molecular Endocrinology, 2013, 27, 1234-1244.	3.7	30
81	Correction to "Differential Activation and Modulation of the Glucagon-Like Peptide-1 Receptor by Small Molecular Ligands― Molecular Pharmacology, 2013, 84, 170-170.	2.3	Ο
82	Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5211-5216.	7.1	203
83	CGRP/Adrenomedullin. , 2013, , 744-751.		0
84	A simple method to generate stable cell lines for the analysis of transient protein-protein interactions. BioTechniques, 2013, 54, 217-221.	1.8	16
85	Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18607-18612.	7.1	62
86	Small Molecule Allosteric Modulation of the Glucagon-Like Peptide-1 Receptor Enhances the Insulinotropic Effect of Oxyntomodulin. Molecular Pharmacology, 2012, 82, 1066-1073.	2.3	51
87	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Differentially Regulates Orthosteric but Not Allosteric Agonist Binding and Function. Journal of Biological Chemistry, 2012, 287, 3659-3673.	3.4	30
88	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation. Journal of Biological Chemistry, 2012, 287, 3642-3658.	3.4	83
89	Consequences of splice variation on Secretin family G protein oupled receptor function. British Journal of Pharmacology, 2012, 166, 98-109.	5.4	44
90	Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery. Molecular Pharmacology, 2012, 82, 281-290.	2.3	69

#	Article	IF	CITATIONS
91	RAMPs and CGRP Receptors. Advances in Experimental Medicine and Biology, 2012, 744, 13-24.	1.6	19
92	Lifting the lid on GPCRs: the role of extracellular loops. British Journal of Pharmacology, 2012, 165, 1688-1703.	5.4	242
93	Modulation of the Glucagon-Like Peptide-1 Receptor Signaling by Naturally Occurring and Synthetic Flavonoids. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 540-550.	2.5	67
94	Polymorphism and Ligand Dependent Changes in Human Glucagon-Like Peptide-1 Receptor (GLP-1R) Function: Allosteric Rescue of Loss of Function Mutation. Molecular Pharmacology, 2011, 80, 486-497.	2.3	84
95	Agonist-specific requirement for a glutamate in transmembrane helix 1 of the oxytocin receptor. Molecular and Cellular Endocrinology, 2011, 333, 20-27.	3.2	8
96	Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock 2010 Assessment. Structure, 2011, 19, 1108-1126.	3.3	269
97	Receptor Activity Modifying Proteins and Their Potential as Drug Targets. Progress in Molecular Biology and Translational Science, 2010, 91, 53-79.	1.7	11
98	Allosteric Ligands of the Glucagon-Like Peptide 1 Receptor (GLP-1R) Differentially Modulate Endogenous and Exogenous Peptide Responses in a Pathway-Selective Manner: Implications for Drug Screening. Molecular Pharmacology, 2010, 78, 456-465.	2.3	195
99	Systematic Analysis of the Entire Second Extracellular Loop of the V1a Vasopressin Receptor. Journal of Biological Chemistry, 2007, 282, 17405-17412.	3.4	76
100	Extracellular loops and ligand binding to a subfamily of Family A G-protein-coupled receptors. Biochemical Society Transactions, 2007, 35, 717-720.	3.4	20
101	Diverse Functional Motifs within the Three Intracellular Loops of the CGRP1Receptorâ€. Biochemistry, 2006, 45, 12976-12985.	2.5	32