Katia Varani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9365549/publications.pdf Version: 2024-02-01

Κλτιλ Πλαλιι

#	Article	IF	CITATIONS
1	Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia. Neuromodulation, 2022, 25, 1240-1247.	0.8	10
2	A _{2A} Adenosine Receptor Antagonists in Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4138-4151.	2.4	18
3	Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells, 2022, 11, 471.	4.1	21
4	Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 1219.	4.1	20
5	Dopamine Transporter, PhosphoSerine129 α-Synuclein and α-Synuclein Levels in Aged LRRK2 G2019S Knock-In and Knock-Out Mice. Biomedicines, 2022, 10, 881.	3.2	5
6	4-Heteroaryl Substituted Amino-3,5-Dicyanopyridines as New Adenosine Receptor Ligands: Novel Insights on Structure-Activity Relationships and Perspectives. Pharmaceuticals, 2022, 15, 478.	3.8	4
7	Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules, 2022, 27, 2680.	3.8	17
8	A2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity?. International Journal of Molecular Sciences, 2022, 23, 5056.	4.1	9
9	Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. European Journal of Medicinal Chemistry, 2022, 238, 114409.	5.5	11
10	Adenosine A2A receptor inhibition reduces synaptic and cognitive hippocampal alterations in Fmr1 KO mice. Translational Psychiatry, 2021, 11, 112.	4.8	18
11	An Open Question: Is the A2A Adenosine Receptor a Novel Target for Alzheimer's Disease Treatment?. Frontiers in Pharmacology, 2021, 12, 652455.	3.5	15
12	Upregulation of Cortical A2A Adenosine Receptors Is Reflected in Platelets of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 1105-1117.	2.6	21
13	Adenosine and Inflammation: Here, There and Everywhere. International Journal of Molecular Sciences, 2021, 22, 7685.	4.1	63
14	A2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer's Disease. Cells, 2021, 10, 2344.	4.1	15
15	A3 Adenosine and P2X7 Purinergic Receptors as New Targets for an Innovative Pharmacological Therapy of Malignant Pleural Mesothelioma. Frontiers in Oncology, 2021, 11, 679285.	2.8	13
16	l-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Research, 2021, 1768, 147583.	2.2	9
17	Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 809.	4.1	41
18	Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytokine, 2020, 125, 154777.	3.2	10

#	Article	IF	CITATIONS
19	"Bridging the Gap―Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. International Journal of Molecular Sciences, 2020, 21, 296.	4.1	63
20	A2A adenosine receptors are involved in the reparative response of tendon cells to pulsed electromagnetic fields. PLoS ONE, 2020, 15, e0239807.	2.5	2
21	Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. International Journal of Molecular Sciences, 2020, 21, 8710.	4.1	43
22	Piperazine- and Piperidine-Containing Thiazolo[5,4-d]pyrimidine Derivatives as New Potent and Selective Adenosine A2A Receptor Inverse Agonists. Pharmaceuticals, 2020, 13, 161.	3.8	11
23	A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic?. Frontiers in Pharmacology, 2020, 11, 625134.	3.5	8
24	Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation. International Journal of Molecular Sciences, 2020, 21, 8053.	4.1	9
25	The Detrimental Action of Adenosine on Glutamate-Induced Cytotoxicity in PC12 Cells Can Be Shifted towards a Neuroprotective Role through A1AR Positive Allosteric Modulation. Cells, 2020, 9, 1242.	4.1	12
26	Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacological Research, 2020, 159, 104940.	7.1	57
27	Structural investigation on thiazolo[5,4-d]pyrimidines to obtain dual-acting blockers of CD73 and adenosine A2A receptor as potential antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127067.	2.2	12
28	Adenosinergic System Involvement in Ischemic Stroke Patients' Lymphocytes. Cells, 2020, 9, 1072.	4.1	7
29	Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. Journal of Medicinal Chemistry, 2019, 62, 6894-6912.	6.4	16
30	Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors. Ranging from Pan Ligands to Combined A1/A2B Partial Agonists. Pharmaceuticals, 2019, 12, 159.	3.8	9
31	New Rigid Nicotine Analogues, Carrying a Norbornane Moiety, Are Potent Agonists of α7 and α3* Nicotinic Receptors. Journal of Medicinal Chemistry, 2019, 62, 1887-1901.	6.4	6
32	Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opinion on Therapeutic Targets, 2019, 23, 669-678.	3.4	32
33	Pulsed electromagnetic field and relief of hypoxiaâ€induced neuronal cell death: The signaling pathway. Journal of Cellular Physiology, 2019, 234, 15089-15097.	4.1	25
34	The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. European Journal of Medicinal Chemistry, 2018, 150, 127-139.	5.5	30
35	A ₃ Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Medicinal Research Reviews, 2018, 38, 1031-1072.	10.5	111
36	Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. Journal of Cellular Physiology, 2018, 233, 2645-2656.	4.1	14

#	Article	IF	CITATIONS
37	Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Bioorganic and Medicinal Chemistry, 2018, 26, 3688-3695.	3.0	14
38	Role of Adenosine Receptors in Clinical Biophysics Based on Pulsed Electromagnetic Fields. , 2018, , 557-580.		1
39	Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes. Frontiers in Pharmacology, 2018, 9, 632.	3.5	88
40	Pharmacology of Adenosine Receptors: The State of the Art. Physiological Reviews, 2018, 98, 1591-1625.	28.8	495
41	Structure-activity relationship studies and pharmacological characterization of N5-heteroarylalkyl-substituted-2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine-based derivatives as inverse agonists at human A2A adenosine receptor. European Journal of Medicinal Chemistry, 2018, 155, 552-561.	5.5	12
42	Pathological overproduction: the bad side of adenosine. British Journal of Pharmacology, 2017, 174, 1945-1960.	5.4	94
43	The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3- <i>d</i>]pyrimidine core in affecting adenosine A ₁ and A _{2A} receptor affinity and selectivity profiles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 248-263.	5.2	14
44	Pharmacoâ€toxicological effects of the novel thirdâ€generation fluorinate synthetic cannabinoids, <scp>5Fâ€ADBINACA</scp> , <scp>ABâ€FUBINACA</scp> , and <scp>STSâ€135</scp> in mice. In vitro and in vivo studies. Human Psychopharmacology, 2017, 32, e2601.) 1.5	40
45	Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathologica Communications, 2017, 5, 22.	5.2	73
46	Deregulation of Adenosine Receptors in Psoriatic Epidermis: An Option for Therapeutic Treatment. Journal of Investigative Dermatology, 2017, 137, 11-13.	0.7	12
47	A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacological Research, 2017, 117, 9-19.	7.1	57
48	Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. Advances in Experimental Medicine and Biology, 2017, 1051, 193-232.	1.6	40
49	Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: Structural exploration to target the A3 and A2A subtypes. European Journal of Medicinal Chemistry, 2017, 125, 611-628.	5.5	17
50	Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clinical and Experimental Nephrology, 2017, 21, 203-211.	1.6	16
51	Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuronâ€Like and Microglial Cells. Journal of Cellular Physiology, 2017, 232, 1200-1208.	4.1	55
52	Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2017, 8, 744.	3.5	134
53	Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Frontiers in Pharmacology, 2017, 8, 888.	3.5	48
54	Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Frontiers in Psychiatry, 2017, 8, 130.	2.6	36

#	Article	IF	CITATIONS
55	Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2017, 18, 697.	4.1	46
56	Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	63
57	Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget, 2017, 8, 7216-7217.	1.8	14
58	Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects?. Trends in Pharmacological Sciences, 2016, 37, 419-434.	8.7	238
59	Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 2794-2808.	3.0	14
60	A2A adenosine receptor upregulation correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Research and Therapy, 2016, 18, 192.	3.5	30
61	Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology, 2016, 233, 3685-3709.	3.1	63
62	Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology, 2016, 111, 283-292.	4.1	33
63	The activation of μâ€opioid receptor potentiates LPSâ€induced NFâ€kB promoting an inflammatory phenotype in microglia. FEBS Letters, 2016, 590, 2813-2826.	2.8	74
64	Design, Synthesis, and Pharmacological Characterization of 2-(2-Furanyl)thiazolo[5,4- <i>d</i>]pyrimidine-5,7-diamine Derivatives: New Highly Potent A _{2A} Adenosine Receptor Inverse Agonists with Antinociceptive Activity. Journal of Medicinal Chemistry, 2016, 59, 10564-10576.	6.4	49
65	New quinoline derivatives as nicotinic receptor modulators. European Journal of Medicinal Chemistry, 2016, 110, 246-258.	5.5	4
66	Repeated Dosing with NCX1404, a Nitric Oxide-Donating Pregabalin, Re-establishes Normal Nociceptive Responses in Mice with Streptozotocin-Induced Painful Diabetic Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 240-247.	2.5	4
67	Effect of JWH-250, JWH-073 and their interaction on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 31-50.	4.8	62
68	Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB ₂ Receptor Agonists. Chemical Reviews, 2016, 116, 519-560.	47.7	91
69	Structural refinement of pyrazolo[4,3- d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A 3 adenosine receptor. European Journal of Medicinal Chemistry, 2016, 108, 117-133.	5.5	18
70	A _{2a} and a _{2b} adenosine receptors affect HIFâ€1α signaling in activated primary microglial cells. Glia, 2015, 63, 1933-1952.	4.9	39
71	Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A 1 adenosine receptor. A position-dependent effect study. European Journal of Medicinal Chemistry, 2015, 101, 185-204.	5.5	13
72	Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. European Journal of Medicinal Chemistry, 2015, 96, 105-121.	5.5	23

#	Article	IF	CITATIONS
73	History and Perspectives of A _{2A} Adenosine Receptor Antagonists as Potential Therapeutic Agents. Medicinal Research Reviews, 2015, 35, 790-848.	10.5	88
74	Current status of A1 adenosine receptor allosteric enhancers. Future Medicinal Chemistry, 2015, 7, 1247-1259.	2.3	19
75	The A ₃ Adenosine Receptor: History and Perspectives. Pharmacological Reviews, 2015, 67, 74-102.	16.0	204
76	Synthesis and biological evaluation of novel 2-amino-3-aroyl-4-neopentyl-5-substituted thiophene derivatives as allosteric enhancers of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 148-166.	3.0	12
77	7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: Structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2014, 84, 614-627.	5.5	22
78	Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease. Neurobiology of Disease, 2014, 71, 193-204.	4.4	22
79	Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A ₁ Adenosine Receptor Based on 2-Amino-3-(4â€2-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. Journal of Medicinal Chemistry, 2014, 57, 7673-7686.	6.4	26
80	TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology, 2014, 81, 6-14.	4.1	59
81	Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers ofÂthe A1 adenosine receptor. European Journal of Medicinal Chemistry, 2013, 67, 409-427.	5.5	17
82	A Consensus Panel Review of Central Nervous System Effects of the Exposure to Low-Intensity Extremely Low-Frequency Magnetic Fields. Brain Stimulation, 2013, 6, 469-476.	1.6	85
83	The stimulation of A3 adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. European Journal of Cancer, 2013, 49, 482-491.	2.8	40
84	Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain, 2013, 154, 864-873.	4.2	56
85	Adenosine and adenosine receptors in rheumatoid arthritis. International Journal of Clinical Rheumatology, 2013, 8, 13-25.	0.3	5
86	Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation?. Tissue Engineering - Part B: Reviews, 2013, 19, 353-367.	4.8	51
87	Multiple sclerosis lymphocytes upregulate <scp>A</scp> _{2A} adenosine receptors that are antiinflammatory when stimulated. European Journal of Immunology, 2013, 43, 2206-2216.	2.9	45
88	A _{2A} adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 406-413.	1.7	34
89	A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats. PLoS ONE, 2013, 8, e54195.	2.5	43
90	Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS ONE, 2013, 8, e65561.	2.5	106

#	Article	IF	CITATIONS
91	Synthesis and Biological Evaluation of 2-Amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. Effect of the 5-Modification on Allosteric Enhancer Activity at the A1 Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55, 7719-7735.	6.4	27
92	The Anti-Tumor Effect of A3 Adenosine Receptors Is Potentiated by Pulsed Electromagnetic Fields in Cultured Neural Cancer Cells. PLoS ONE, 2012, 7, e39317.	2.5	39
93	Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics, 2012, 33, 279-287.	1.6	31
94	Structure–activity relationships of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophenes. Part 2: Probing the influence of diverse substituents at the phenyl of the arylpiperazine moiety on allosteric enhancer activity at the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 996-1007.	3.0	14
95	Adenosine receptor targeting in health and disease. Expert Opinion on Investigational Drugs, 2011, 20, 1591-1609.	4.1	74
96	A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Research and Therapy, 2011, 13, R197.	3.5	113
97	Adenosine Receptors in Health and Disease. Advances in Pharmacology, 2011, 61, 41-75.	2.0	70
98	A ₃ Receptors Are Overexpressed in Pleura from Patients with Mesothelioma and Reduce Cell Growth via Akt/Nuclear Factor-κB Pathway. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 522-530.	5.6	44
99	The role of adenosine receptors in rheumatoid arthritis. Autoimmunity Reviews, 2010, 10, 61-64.	5.8	40
100	P2X ₁ and P2X ₃ Purinergic Receptors Differentially Modulate the Inflammatory Response in Human Osteoarthritic Synovial Fibroblasts. Cellular Physiology and Biochemistry, 2010, 25, 325-336.	1.6	15
101	A _{2A} adenosine receptor overexpression and functionality, as well as TNFâ€Î± levels, correlate with motor symptoms in Parkinson's disease. FASEB Journal, 2010, 24, 587-598.	0.5	107
102	Oxidative/nitrosative stress selectively altered A _{2B} adenosine receptors in chronic obstructive pulmonary disease. FASEB Journal, 2010, 24, 1192-1204.	0.5	15
103	Normalization of A _{2A} and A ₃ adenosine receptor upâ€regulation in rheumatoid arthritis patients by treatment with anti–tumor necrosis factor α but not methotrexate. Arthritis and Rheumatism, 2009, 60, 2880-2891.	6.7	74
104	Thermodynamics of A2B adenosine receptor binding discriminates agonistic from antagonistic behaviour. Biochemical Pharmacology, 2008, 75, 562-569.	4.4	17
105	Binding thermodynamic characterization of human P2X1 and P2X3 purinergic receptors. Biochemical Pharmacology, 2008, 75, 1198-1208.	4.4	9
106	The A3 adenosine receptor: An enigmatic player in cell biology. , 2008, 117, 123-140.		197
107	Synthesis and Biological Evaluation of 2-Amino-3-(4-Chlorobenzoyl)-4-[<i>N</i> -(Substituted) Piperazin-1-yl]Thiophenes as Potent Allosteric Enhancers of the A _₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2008, 51, 5875-5879.	6.4	46
108	Alteration of Adenosine Receptors in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 398-406.	5.6	101

Katia Varani

#	Article	IF	CITATIONS
109	Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochemical Pharmacology, 2005, 70, 1601-1612.	4.4	53
110	Alteration of A3 adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochemical Pharmacology, 2003, 66, 1897-1906.	4.4	28
111	Adenosine receptors and human melanoma. Drug Development Research, 2003, 58, 377-385.	2.9	10
112	Changes of peripheral A 2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB Journal, 2003, 17, 280-282.	0.5	85
113	Aberrant A 2A receptor function in peripheral blood cells in Huntington's disease. FASEB Journal, 2003, 17, 1-16.	0.5	75
114	Effects of Doxazosin and Propranolol on A2AAdenosine Receptors in Essential Hypertension. Hypertension, 2002, 40, 909-913.	2.7	14
115	A ₃ Adenosine Receptors in Human Neutrophils and Promyelocytic HL60 Cells: A Pharmacological and Biochemical Study. Molecular Pharmacology, 2002, 61, 415-424.	2.3	375
116	Binding thermodynamics at the human A3 adenosine receptor. Biochemical Pharmacology, 2002, 63, 157-161.	4.4	25
117	Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. British Journal of Pharmacology, 2002, 136, 57-66.	5.4	119
118	Comparison of prazosin, terazosin and tamsulosin: Functional and binding studies in isolated prostatic and vascular human tissues. Prostate, 2001, 47, 231-238.	2.3	5
119	Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. British Journal of Pharmacology, 2001, 134, 116-126.	5.4	100
120	Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. British Journal of Pharmacology, 2001, 134, 1215-1226.	5.4	107
121	Can thermodynamic measurements of receptor binding yield information on drug affinity and efficacy?. Biochemical Pharmacology, 2000, 60, 1549-1556.	4.4	76
122	Endocrineâ€Ðisrupting Agents on Healthy Human Tissues. Basic and Clinical Pharmacology and Toxicology, 2000, 86, 24-29.	0.0	43
123	Caffeine Alters A _{2A} Adenosine Receptors and Their Function in Human Platelets. Circulation, 1999, 99, 2499-2502.	1.6	102
124	Plateletα2â€adrenoceptor alterations in patients with essential hypertension. British Journal of Clinical Pharmacology, 1999, 47, 167-172.	2.4	37
125	[3 H]-SCH 58261 labelling of functional A2A adenosine receptors in human neutrophil membranes. British Journal of Pharmacology, 1998, 123, 1723-1731.	5.4	56
126	Adenosine A2A receptors of human circulating blood elements. Drug Development Research, 1998, 45, 253-260.	2.9	5

#	Article	IF	CITATIONS
127	Characterization of A2A adenosine receptors in human lymphocyte membranes by [3 H]-SCH 58261 binding. British Journal of Pharmacology, 1997, 122, 386-392.	5.4	41
128	Pharmacological and biochemical characterization of purified A _{2a} adenosine receptors in human platelet membranes by [³ H] GS 21680 binding. British Journal of Pharmacology, 1996, 117, 1693-1701.	5.4	79
129	Changes in [³ H]â€UK14304 binding to α ₂ â€adrenoceptors in morphineâ€dependent guineaâ€pigs. British Journal of Pharmacology, 1995, 116, 3125-3132.	5.4	5