Bingsuo zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9365246/publications.pdf

Version: 2024-02-01

		23567	2	20961
355	16,716	58		115
papers	citations	h-index		g-index
357	357	357		15713
337	337	337		13/13
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	In situ preparation of Mn-doped perovskite nanocrystalline films and application to white light emitting devices. Journal of Colloid and Interface Science, 2022, 606, 1163-1169.	9.4	16
2	Efficient broadband near-infrared luminescence of Cr3+ doped fluoride K2NaInF6 and its NIR-LED application toward veins imaging. Chemical Engineering Journal, 2022, 427, 131740.	12.7	72
3	Enhanced performance of solution-processed all-inorganic halide perovskite photodetectors by using bulk heterojunction and lateral configuration. Journal of Alloys and Compounds, 2022, 896, 163022.	5.5	10
4	Surfaceâ€Activated Ti ₃ C ₂ T _{<i>x</i>} MXene Cocatalyst Assembled with CdZnSâ€Formed 0D/2D CdZnS/Ti ₃ C ₂ â€A ₄₀ Schottky Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Solar Rrl, 2022, 6, .	5.8	23
5	Revealing the Quantum-Confined Free Exciton A Anisotropic Emission in a CdS/CdS:SnS ₂ Superlattice Nanocone via Angle-Resolved Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 1064-1075.	3.1	2
6	Magnetic polaronic and bipolaronic excitons in Mn(II) doped (TDMP)PbBr4 and their high emission. Nano Energy, 2022, 93, 106863.	16.0	25
7	Enhanced photoluminescence efficiencies of CsPbCl3-xBrx nanocrystals by incorporating neodymium ions. Journal of Luminescence, 2022, 243, 118658.	3.1	7
8	Light Emission Enhancement of (C ₃ H ₁₀ N) ₄ Pb _{1â€"⟨i>x⟨i>x⟨i>⟨ sub⟩Mn⟨sub⟩⟨i>x⟨ i>⟨ sub⟩Br⟨sub⟩6 Metal-Halide Powders by the Dielectric Confinement Effect of a Nanosized Water Layer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6167-6179.}	;	14
9	Stoichiometryâ€Controlled Phase Engineering of Cesium Bismuth Halides and Reversible Structure Switch. Advanced Optical Materials, 2022, 10, .	7.3	27
10	Component Engineering to Tailor the Structure and Optical Properties of Sb-Doped Indium-Based Halides. Inorganic Chemistry, 2022, 61, 1486-1494.	4.0	35
11	(C16H28N)2SbCl5: A new lead-free zero-dimensional metal-halide hybrid with bright orange emission. Science China Materials, 2022, 65, 1594-1600.	6.3	53
12	One-pot synthesis of novel ligand-free tin(<scp>ii</scp>)-based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors. Nanoscale, 2022, 14, 4170-4180.	5.6	4
13	Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surfaces and Interfaces, 2022, 29, 101772.	3.0	21
14	Effects of Electron–Phonon Coupling and Spin–Spin Coupling on the Photoluminescence of Low-Dimensional Metal Halides. Journal of Physical Chemistry Letters, 2022, 13, 1752-1764.	4.6	34
15	Pure White Emission with 91.9% Photoluminescence Quantum Yield of [(C ₃ H ₇ (sub>) ₄ N] ₂ Cu ₂ I ₄ out of Polaronic States and Ultra-High Color Rendering Index. ACS Applied Materials & Applie	8.0	47
16	Phase-Selective Solution Synthesis of Cd-Based Perovskite Derivatives and Their Structure/Emission Modulation. Journal of Physical Chemistry Letters, 2022, 13, 3682-3690.	4.6	23
17	Efficient Yellow Self-Trapped Exciton Emission in Sb ³⁺ -Doped RbCdCl ₃ Metal Halides. Inorganic Chemistry, 2022, 61, 7143-7152.	4.0	34
18	Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl ₃ Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Diterfaces, 2022, 14, 21356-21362.	8.0	6

#	Article	IF	CITATIONS
19	Hybrid Bulkâ€Heterojunction of Colloidal Quantum Dots and Mixedâ€Halide Perovskite Nanocrystals for Highâ€Performance Selfâ€Powered Broadband Photodetectors. Advanced Functional Materials, 2022, 32, .	14.9	69
20	Highly Efficient Broadband Green Emission of (TPA)CuCl ₂ Single Crystals: Understanding the Formation of Self-Trapped States. Journal of Physical Chemistry C, 2022, 126, 8545-8552.	3.1	18
21	High-efficient yellow-green emission in (TDMP)MnBr4 single crystal with modulation of spin-phonon-charge interactions. Materials Today Physics, 2022, 25, 100703.	6.0	23
22	Cu substitution boosts self-trapped exciton emission in zinc-based metal halides for sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9530-9537.	5.5	8
23	Hybrid Nanocomposites of Allâ€Inorganic Halide Perovskites with Polymers for Highâ€Performance Fieldâ€Effectâ€Transistorâ€Based Photodetectors: An Experimental and Simulation Study. Advanced Materials Interfaces, 2022, 9, .	3.7	19
24	Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light: Science and Applications, 2022, 11, .	16.6	55
25	Highly efficient and thermally stable broadband near-infrared emitting fluoride Cs ₂ KGaF ₆ :Cr ³⁺ for multiple LED applications. Journal of Materials Chemistry C, 2022, 10, 10292-10301.	5.5	15
26	Aluminum chloride assisted synthesis of near-unity emitting Mn ²⁺ -doped CsPbCl ₃ perovskite nanocrystals for bright white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9849-9857.	5.5	7
27	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	5.5	12
28	A Zero-Dimensional Organic Lead Bromide of (TPA)2PbBr4 Single Crystal with Bright Blue Emission. Nanomaterials, 2022, 12, 2222.	4.1	6
29	Efficient Self-Trapped Exciton Emission in Ruddlesden–Popper Sb-Doped Cs ₃ Cd ₂ Cl ₇ Perovskites. Journal of Physical Chemistry C, 2022, 126, 11238-11245.	3.1	21
30	Highly efficient and stable red-emitting Sb-doped Indium-based perovskites via anionic component engineering. Materials Research Bulletin, 2022, 155, 111948.	5.2	3
31	Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures. Journal of Materials Science and Technology, 2021, 68, 216-226.	10.7	37
32	Arbuscular mycorrhizal fungi can ameliorate salt stress in <i>Elaeagnus angustifolia</i> by improving leaf photosynthetic function and ultrastructure. Plant Biology, 2021, 23, 232-241.	3.8	18
33	Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Research, 2021, 14, 1551-1558.	10.4	127
34	Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states. Journal of Materials Chemistry C, 2021, 9, 12184-12190.	5.5	43
35	Surface organic ligand-passivated quantum dots: toward high-performance light-emitting diodes with long lifetimes. Journal of Materials Chemistry C, 2021, 9, 2483-2490.	5.5	18
36	Lead-free Mn ^{II} -based red-emitting hybrid halide (CH ₆ N ₃) ₂ MnCl ₄ toward high performance warm WLEDs. Journal of Materials Chemistry C, 2021, 9, 4895-4902.	5.5	63

#	Article	IF	Citations
37	Photoluminescence and Boosting Electron–Phonon Coupling in CdS Nanowires with Variable Sn(IV) Dopant Concentration. Nanoscale Research Letters, 2021, 16, 19.	5.7	2
38	Bulk assembly of a OD organic tin(<scp>ii</scp>)chloride hybrid with high anti-water stability. Chemical Communications, 2021, 57, 8162-8165.	4.1	21
39	Dielectric polarization effect and transient relaxation in FAPbBr ₃ films before and after PMMA passivation. Physical Chemistry Chemical Physics, 2021, 23, 10153-10163.	2.8	14
40	Robust Fano resonance in the photonic valley Hall states. Physical Review A, 2021, 103, .	2.5	27
41	Efficient Energy Transfer in Te ⁴⁺ -Doped Cs ₂ ZrCl ₆ Vacancy-Ordered Perovskites and Ultrahigh Moisture Stability via A-Site Rb-Alloying Strategy. Journal of Physical Chemistry Letters, 2021, 12, 1829-1837.	4.6	127
42	Anomalous nonlinear optical effect and enhanced emission by magnetic excitons in CVD grown cobalt-doped ZnSe nanoribbon. New Journal of Physics, 2021, 23, 033019.	2.9	10
43	Highly Efficient Cool-White Photoluminescence of (Gua) ₃ Cu ₂ I ₅ Single Crystals: Formation and Optical Properties. ACS Applied Materials & Therfaces, 2021, 13, 13443-13451.	8.0	63
44	Strong yellow emission of polaronic magnetic exciton in Fe3+-doped CsCdCl3 perovskites. Applied Physics Letters, 2021, 118, .	3.3	22
45	Controlled Structural Transformation in Sbâ€Doped Indium Halides A ₃ InCl ₆ and A ₂ InCl ₅ â^™H ₂ O Yields Reversible Greenâ€toâ€Yellow Emission Switch. Advanced Optical Materials, 2021, 9, 2002267.	7.3	55
46	New Type of Thermoelectric CdSSe Nanowire Chip. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30959-30966.	8.0	8
47	Water-Stable Zero-Dimensional (C ₄ H ₉) ₄ NCuCl ₂ Single Crystal with Highly Efficient Broadband Green Emission. Journal of Physical Chemistry Letters, 2021, 12, 6639-6647.	4.6	53
48	Inorganic Solid Phosphorus Precursor of Sodium Phosphaethynolate for Synthesis of Highly Luminescent InP-Based Quantum Dots. ACS Energy Letters, 2021, 6, 2697-2703.	17.4	35
49	Self-Trapped Exciton Emission in a Zero-Dimensional (TMA) ₂ SbCl ₅ Â-DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability. Journal of Physical Chemistry Letters, 2021, 12, 7091-7099.	4.6	86
50	Advances and Challenges in Two-Dimensional Organic–Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes. Nano-Micro Letters, 2021, 13, 163.	27.0	54
51	A Monolithic Solid-State Sodium–Sulfur Battery with Al-Doped Na _{3.4} Zr ₂ (Si _{0.8} P _{0.2} O ₄) ₃ Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 42927-42934.	8.0	20
52	Polaronic Magnetic Excitons and Photoluminescence in Mn ²⁺ -Doped CsCdBr ₃ Metal Halides. Journal of Physical Chemistry C, 2021, 125, 18031-18039.	3.1	23
53	Bulk Assembly of Zero-Dimensional Organic Copper Bromide Hybrid with Bright Self-Trapped Exciton Emission and High Antiwater Stability. Journal of Physical Chemistry C, 2021, 125, 20014-20021.	3.1	33
54	Defect controls by silicon doping in non-polar a-plane AlGaN epi-layers. Materials Express, 2021, 11, 1466-1475.	0.5	0

#	Article	IF	CITATIONS
55	Reversible Zn2+ Insertion in Tungsten Ion-Activated Titanium Dioxide Nanocrystals for Electrochromic Windows. Nano-Micro Letters, 2021, 13, 196.	27.0	63
56	Computational insights into optoelectronic and magnetic properties of $V(III)$ -doped GaN. Journal of Solid State Chemistry, 2021, 304, 122606.	2.9	4
57	Organic-inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons. Nano Energy, 2021, 87, 106166.	16.0	85
58	Thermal and photo stability of all inorganic lead halide perovskite nanocrystals. Physical Chemistry Chemical Physics, 2021, 23, 17113-17128.	2.8	25
59	Large-scale facile-synthesis and bistable emissions of one-dimensional organic–inorganic C ₄ H ₁₄ N ₂ PbBr ₄ metal halide crystals with bipolaronic states. New Journal of Chemistry, 2021, 45, 17247-17257.	2.8	9
60	Efficient energy transfer in Cs ₄ Mn _{<i>x</i>} Cd _{1â^'<i>x</i>} Sb ₂ Cl ₁₂ layered perovskites and anomalously responsive photodetectors. Journal of Materials Chemistry C, 2021, 9, 15522-15529.	5.5	14
61	Dual self-trapped exciton emission of (TBA) < sub>2 < /sub>Cu < sub>2 < /sub>I < sub>4 < /sub>: optical properties and high anti-water stability. Journal of Materials Chemistry C, 2021, 9, 16014-16021.	5.5	24
62	Two-photon scattering and correlation in a four-terminal waveguide system. Optics Express, 2021, 29, 35664.	3.4	3
63	Exceptional points in a topological waveguide-cavity coupled system. New Journal of Physics, 2021, 23, 113025.	2.9	7
64	A Polarization-Sensitive Self-Powered Photodetector Based on a p-WSe ₂ /TalrTe ₄ /n-MoS ₂ van der Waals Heterojunction. ACS Applied Materials & Diteraces, 2021, 13, 61544-61554.	8.0	22
65	Theoretical study of transparent peaks in a topological waveguide-cavity coupled system. Applied Physics Letters, 2021, 119, .	3.3	5
66	ZnO nanorods array as light absorption antenna for high-gain UV photodetectors. Journal of Alloys and Compounds, 2020, 812, 152158.	5 . 5	43
67	Frequency dependent electrocaloric effect in Nb-doped PZST relaxor thin film with the coexistence of tetragonal antiferroelectric and rhombohedral ferroelectric phases. Ceramics International, 2020, 46, 4300-4306.	4.8	15
68	Theoretical investigation of optoelectronic and magnetic properties of Co-doped ZnS and (Al, Co) co-doped ZnS. Computational Materials Science, 2020, 174, 109491.	3.0	17
69	Effect of Vanadium doping on optoelectronic and magnetic properties of wurtzite ZnS crystal. Optik, 2020, 204, 164162.	2.9	14
70	Sn-Doped CdS Nanowires with Low-Temperature Lasing by CW-Laser Excitation. ACS Applied Electronic Materials, 2020, 2, 282-289.	4.3	8
71	All-solution-processed UV-IR broadband trilayer photodetectors with CsPbBr ₃ colloidal nanocrystals as carriers-extracting layer. Nanotechnology, 2020, 31, 165502.	2.6	16
72	Porous Single-Wall Carbon Nanotube Templates Decorated with All-inorganic Perovskite Nanocrystals for Ultraflexible Photodetectors. ACS Applied Nano Materials, 2020, 3, 459-467.	5.0	19

#	Article	IF	CITATIONS
73	Homo- and Heterovalent Doping-Mediated Self-Trapped Exciton Emission and Energy Transfer in Mn-Doped Cs∢sub>2∢/sub>Na∢sub>1–∢i>x√/i>√/sub>Ag∢sub>∢i>x√/i>√/sub>BiCl∢sub>6∢/sub> Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 340-348.	4.6	104
74	Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203.	2.6	30
75	Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film. Nano Energy, 2020, 77, 105132.	16.0	27
76	Colloidal Synthesis of Giant Shell PbSe-Based Core/Shell Quantum Dots in Polar Solvent: Cation Exchange versus Epitaxial Growth. Chemistry of Materials, 2020, 32, 6650-6656.	6.7	7
77	Bosonic Lasing of Collective Exciton Magnetic Polarons in CuCl ₂ -Doped CdS Nanoribbons: Implications for Quantum Light Sources. ACS Applied Nano Materials, 2020, 3, 5019-5032.	5.0	14
78	Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire. Nano Energy, 2020, 78, 105202.	16.0	16
79	Vertically Stacked MoSe ₂ /MoO ₂ Nanolayered Photodetectors with Tunable Photoresponses. ACS Applied Nano Materials, 2020, 3, 7543-7553.	5.0	23
80	Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26153-26160.	8.0	51
81	Highly Efficient Self-Trapped Exciton Emission of a (MA) ₄ Cu ₂ Br ₆ Single Crystal. Journal of Physical Chemistry Letters, 2020, 11, 4703-4710.	4.6	138
82	Antiferromagnetic Magnetic Polaron Formation and Optical Properties of CVD-Grown Mn-Doped Zinc Stannate (ZTO). ACS Applied Electronic Materials, 2020, 2, 1679-1688.	4.3	17
83	Solutionâ€Processed, Selfâ€Powered Broadband CH ₃ NH ₃ PbI ₃ Photodetectors Driven by Asymmetric Electrodes. Advanced Optical Materials, 2020, 8, 2000215.	7.3	32
84	Spin-related optical behaviors of dilute magnetic semiconductor ZnSe:Ni(II) nanobelts. Nanotechnology, 2020, 31, 325002.	2.6	20
85	Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology, 2020, 31, 254001.	2.6	13
86	Evolution of the structure and properties of mechanochemically synthesized pyrrolidine incorporated manganese bromide powders. Journal of Materials Chemistry C, 2020, 8, 6488-6495.	5.5	49
87	Magnetic quantification of single-crystalline Fe and Co nanowires via off-axis electron holography. Journal of Chemical Physics, 2020, 152, 114202.	3.0	4
88	The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2020, 35, 984-992.	3.0	18
89	Multipoint Nanolaser Array in an Individual Core–Shell CdS Branched Nanostructure. Advanced Optical Materials, 2020, 8, 1901644.	7.3	9
90	Highly Stable Red Quantum Dot Light-Emitting Diodes with Long <i>T</i> ₉₅ Operation Lifetimes. Journal of Physical Chemistry Letters, 2020, 11, 3111-3115.	4.6	76

#	Article	IF	Citations
91	Mg-Doped ZnO Nanoparticle Films as the Interlayer between the ZnO Electron Transport Layer and InP Quantum Dot Layer for Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 8758-8765.	3.1	30
92	Dynamics of chiral state transitions and relaxations in an FeGe thin plate <i>via in situ</i> Lorentz microscopy. Nanoscale, 2020, 12, 14919-14925.	5.6	6
93	Synthesis and optical properties of Mn2+-doped Cd–In–S colloidal nanocrystals. Journal of Materials Science, 2020, 55, 12801-12810.	3.7	7
94	Highly Efficient Blue Emission from Self-Trapped Excitons in Stable Sb ³⁺ -Doped Cs ₂ NaInCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2053-2061.	4.6	259
95	Near-Unity Red Mn ²⁺ Photoluminescence Quantum Yield of Doped CsPbCl ₃ Nanocrystals with Cd Incorporation. Journal of Physical Chemistry Letters, 2020, 11, 2142-2149.	4.6	77
96	First principles calculations of optoelectronic and magnetic properties of Co-doped and (Co, Al) co-doped ZnO. Journal of Applied Physics, 2020, 127, 065707.	2.5	10
97	Impact of vacancy defects on optoelectronic and magnetic properties of Mn-doped ZnSe. Computational Materials Science, 2020, 174, 109493.	3.0	20
98	A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824, 153970.	5.5	22
99	Ultrafast photomechanical transduction through thermophoretic implosion. Nature Communications, 2020, 11, 50.	12.8	11
100	Spin-polarized exciton formation in Co-doped GaN nanowires. Materials Chemistry and Physics, 2020, 245, 122756.	4.0	10
101	Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light: Science and Applications, 2020, 9, 73.	16.6	83
102	Red, Green, and Blue Microcavity Quantum Dot Light-Emitting Devices with Narrow Line Widths. ACS Applied Nano Materials, 2020, 3, 5301-5310.	5.0	18
103	Surface Engineering of Allâ€Inorganic Perovskite Quantum Dots with Quasi Coreâ^'Shell Technique for Highâ€Performance Photodetectors. Advanced Materials Interfaces, 2020, 7, 2000360.	3.7	34
104	Surface Plasmon Enhanced Exciton Transitions, Cavity Resonance Effects, and Exciton–/Polariton–LO Phonon Interactions in ZnO Nanowires. Journal of Physical Chemistry C, 2020, 124, 28252-28260.	3.1	1
105	Fragile topologically protected perfect reflection for acoustic waves. Physical Review Research, 2020, 2, .	3.6	12
106	Optical Josephson oscillation achieved by two coupled exciton-polariton condensates. Optics Express, 2020, 28, 9136.	3.4	8
107	Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photonics Research, 2020, 8, 768.	7.0	94
108	Stable blue-emissive aluminum acetylacetonate nanocrystals with high quantum yield of over 80% and embedded in polymer matrix for remote UV-pumped white light–emitting diodes. Nanophotonics, 2020, 9, 1509-1518.	6.0	1

#	Article	IF	Citations
109	Comparative Studies on Two-Dimensional (2D) Rectangular and Hexagonal Molybdenum Dioxide Nanosheets with Different Thickness. Nanoscale Research Letters, 2020, 15, 156.	5.7	13
110	<i>Ab initio</i> study of optoelectronic and magnetic properties of Mn-doped ZnS with and without vacancy defects. Journal of Physics Condensed Matter, 2019, 31, 485706.	1.8	6
111	Direct Observation of Surface Polarons in Capped CulnS2 Quantum Dots by Ultrafast Pump–Probe Spectroscopies. Journal of Physical Chemistry Letters, 2019, 10, 5297-5301.	4.6	15
112	High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology, 2019, 30, 465203.	2.6	30
113	Transport and entanglement for single photons in optical waveguide ladders. Physical Review A, 2019, 100, .	2.5	12
114	Influence of contact resistance on the electrical characteristics of organic static induction transistors. Semiconductor Science and Technology, 2019, 34, 095022.	2.0	1
115	Optoelectronic and magnetic properties of Mn-doped and Mn–C co-doped Wurtzite ZnS: a first-principles study. Journal of Physics Condensed Matter, 2019, 31, 395702.	1.8	11
116	Synthesis of high-efficient Mn2+ doped CsPbCl3 perovskite nanocrystals in toluene and surprised lattice ejection of dopants at mild temperature. Journal of Alloys and Compounds, 2019, 806, 858-863.	5 . 5	6
117	Synthesis of dual-emission Ag- and Mn-codoped Zn-ln-S nanocrystals and their optical radiometric temperature sensors. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	6
118	First principle calculations on electronic, magnetic and optical properties of Mn doped and N co-doped CdS. Materials Research Express, 2019, 6, 116126.	1.6	9
119	Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr ₃ Micro/Nanowires. Journal of Physical Chemistry C, 2019, 123, 25349-25358.	3.1	47
120	Gaining Insight into the Underlayer Treatment for in Situ Fabrication of Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 17353-17359.	3.1	8
121	The contribution of Cr(III)-doping on the modulation of magnetic and luminescence properties of GaN nanowires. Superlattices and Microstructures, 2019, 132, 106159.	3.1	5
122	Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 3248-3253.	4.6	83
123	Interstitial Zn-modulated ferromagnetism in Co-doped ZnSe. Materials Research Express, 2019, 6, 106121.	1.6	2
124	Tunable Emission Properties of Manganese Chloride Small Single Crystals by Pyridine Incorporation. ACS Omega, 2019, 4, 8039-8045.	3.5	43
125	Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film. Energy and Environmental Science, 2019, 12, 1708-1717.	30.8	93
126	Room temperature synthesis of Mn-doped Cs ₃ Pb _{6.48} Cl ₁₆ perovskite nanocrystals with pure dopant emission and temperature-dependent photoluminescence. CrystEngComm, 2019, 21, 3568-3575.	2.6	8

#	Article	IF	CITATIONS
127	Single-channel dual tunable emission in the visible and near-infrared region using aggregations of Mn(II) ions in an individual Mn-doped CdS nanosheet. Journal of Physics and Chemistry of Solids, 2019, 132, 197-203.	4.0	2
128	Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chinese Physics B, 2019, 28, 020701.	1.4	17
129	CdSSe nanowire-chip based wearable sweat sensor. Journal of Nanobiotechnology, 2019, 17, 42.	9.1	14
130	In-Plane Anisotropic Raman Response and Electrical Conductivity with Robust Electron–Photon and Electron–Phonon Interactions of Air Stable MoO ₂ Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 2182-2190.	4.6	28
131	Transport tuning of photonic topological edge states by optical cavities. Physical Review A, 2019, 99, .	2.5	33
132	Growth of CdS nanotubes and their strong optical microcavity effects. Nanoscale, 2019, 11, 5325-5329.	5.6	15
133	Solution-phase, template-free synthesis of Pbl ₂ and MAPbl ₃ nano/microtubes for high-sensitivity photodetectors. Nanoscale, 2019, 11, 5188-5196.	5. 6	24
134	Tailoring the electrocaloric effect of Pb _{0.78} Ba _{0.2} La _{0.02} ZrO ₃ relaxor thin film by GaN substrates. Journal of Materials Chemistry C, 2019, 7, 14109-14115.	5.5	20
135	To enhance the performance of all-inorganic perovskite photodetectors <i>via</i> constructing both bilayer heterostructure and bipolar carrier transporting channels. Journal of Materials Chemistry C, 2019, 7, 14938-14948.	5.5	18
136	Magnetic coupling in 3D-hierarchical MnO2 microsphere. Journal of Materials Science: Materials in Electronics, 2019, 30, 2802-2808.	2.2	7
137	A one-step method to synthesize CH ₃ NH ₃ PbI ₃ :MoS ₂ nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology, 2019, 30, 085707.	2.6	14
138	One-step synthesis of nail-like Mn-doped CdS/CdBr2 hetero-nanostructures for potential lasing application. Nanotechnology, 2019, 30, 075605.	2.6	4
139	Dual-Color Lasing Lines from EMPs in Diluted Magnetic Semiconductor CdS:Nil Structure. Research, 2019, 2019, 6956937.	5.7	17
140	Spin-induced magnetic anisotropy in novel Co-doped GaN nanoneedles and their related photoluminescence. New Journal of Chemistry, 2018, 42, 8338-8341.	2.8	4
141	Efficiency enhancement for solution-processed PbS quantum dots solar cells by inserting graphene oxide as hole-transporting and interface modifying layer. Organic Electronics, 2018, 58, 270-275.	2.6	12
142	Centimeterâ€Sized Cs ₄ PbBr ₆ Crystals with Embedded CsPbBr ₃ Nanocrystals Showing Superior Photoluminescence: Nonstoichiometry Induced Transformation and Lightâ€Emitting Applications. Advanced Functional Materials, 2018, 28, 1706567.	14.9	251
143	Single Source Precursor Chemical Vapor Decomposition Method to Fabricate Stable, Bright Emissive Aluminum Hydroxide Phosphors for UVâ€Pumped White Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1701115.	7.3	8
144	Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires. Nanotechnology, 2018, 29, 055707.	2.6	17

#	Article	IF	CITATIONS
145	The aggregation of Fe ³⁺ and their d–d radiative transitions in ZnSe:Fe ³⁺ nanobelts by CVD growth. RSC Advances, 2018, 8, 3133-3139.	3.6	11
146	Pyridine-Modulated Mn Ion Emission Properties of C ₁₀ H ₁₂ N ₂ MnBr ₄ and C ₅ H ₆ NMnBr ₃ Single Crystals. Journal of Physical Chemistry C, 2018, 122, 3130-3137.	3.1	88
147	Transmission and correlation of a two-photon pulse in a one-dimensional waveguide coupled with quantum emitters. Physical Review A, 2018, 97, .	2.5	10
148	<scp>PEDOT</scp> : <scp>PSS</scp> Modification by blending graphene oxide to improve the efficiency of organic solar cells. Polymer Composites, 2018, 39, 3066-3072.	4.6	11
149	The role of surfactant-treated graphene oxide in polymer solar cells: Mobility study. Organic Electronics, 2018, 53, 303-307.	2.6	6
150	The tunable bandgap effect of SnS films. Journal of Physics Condensed Matter, 2018, 30, 465302.	1.8	7
151	Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology, 2018, 29, 465709.	2.6	17
152	High-sensitivity broadband colloidal quantum dot heterojunction photodetector for night-sky radiation. Journal of Alloys and Compounds, 2018, 764, 446-451.	5.5	19
153	Accuracy enhancement of laser induced breakdown spectroscopy by safely low-power discharge. Optics Express, 2018, 26, 13973.	3.4	14
154	Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption. Journal of Physical Chemistry Letters, 2018, 9, 4878-4885.	4.6	73
155	Efficient Light-Emitting Diodes Based on <i>in Situ</i> Fabricated FAPbBr ₃ Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano, 2018, 12, 8808-8816.	14.6	237
156	Influence of the Post-Synthesis Annealing on Device Performance of PbS Quantum Dot Photoconductive Detectors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800408.	1.8	4
157	Generation of optical vortices by exciton polaritons in pillar semiconductor microcavities. Optics Express, 2018, 26, 22273.	3.4	14
158	Single microwave photon switch controlled by an external electrostatic field. Physical Review A, 2018, 98, .	2.5	8
159	Colloidal Synthesis of CH ₃ NH ₃ PbBr ₃ Nanoplatelets with Polarized Emission through Selfâ€Organization. Angewandte Chemie - International Edition, 2017, 56, 1780-1783.	13.8	92
160	Spin–exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon. Nanotechnology, 2017, 28, 105202.	2.6	29
161	PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices. Materials Letters, 2017, 196, 176-178.	2.6	10
162	Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer. Journal of Alloys and Compounds, 2017, 717, 150-155.	5.5	19

#	Article	IF	CITATIONS
163	Cavity-Enhanced Microphotoluminescence in a Core–Shell n–p CdS/CdO Micrometer Wire and Its Efficient Surface Photovoltage Responses in the Whole Visible Range. Journal of Physical Chemistry C, 2017, 121, 14349-14358.	3.1	10
164	Ligandâ€Controlled Formation and Photoluminescence Properties of CH ₃ NH ₃ PbBr ₃ Nanocubes and Nanowires. ChemNanoMat, 2017, 3, 303-310.	2.8	57
165	Optically programmable encoder based on light propagation in two-dimensional regular nanoplates. Nanotechnology, 2017, 28, 145701.	2.6	1
166	Surfactant-treated graphene oxide in organic solvents and its application in photovoltaic cells. Current Applied Physics, 2017, 17, 343-350.	2.4	13
167	Influence of post-synthesis annealing on PbS quantum dot solar cells. Organic Electronics, 2017, 42, 309-315.	2.6	25
168	Strong Polarized Photoluminescence from Stretched Perovskiteâ€Nanocrystalâ€Embedded Polymer Composite Films. Advanced Optical Materials, 2017, 5, 1700594.	7.3	63
169	Novel Cd-CdS micro/nano heterostructures: Synthesis and luminescence properties. Optical Materials, 2017, 73, 527-534.	3.6	10
170	Alkylthiol-enabled Se powder dissolving for phosphine-free synthesis of highly emissive, large-sized and spherical Mn-doped ZnSeS nanocrystals. RSC Advances, 2017, 7, 44867-44873.	3.6	10
171	Large tunable luminescence by Mn(<scp>ii</scp>) aggregates in Mn-doped ZnS nanobelts. Journal of Materials Chemistry C, 2017, 5, 8749-8757.	5.5	36
172	In situ TEM observation of novel chemical evolution of MnBr2 catalyzed by Cu under electron beam irradiation. Chemical Physics Letters, 2017, 686, 44-48.	2.6	4
173	Formation of Mn doped CH ₃ NH ₃ PbBr ₃ perovskite microrods and their collective EMP lasing. Journal of Physics Communications, 2017, 1, 055018.	1.2	13
174	Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr ₃ quantum dots and ternary PbS _x Se _{1â^'x} quantum dots as the active layer. Nanotechnology, 2017, 28, 505501.	2.6	30
175	Mesoporous Aluminum Hydroxide Synthesized by a Singleâ€Source Precursorâ€Decomposition Approach as a Highâ€Quantumâ€Yield Blue Phosphor for UVâ€Pumped Whiteâ€Lightâ€Emitting Diodes. Advanced Material 2017, 29, 1604284.	s 21. 0	47
176	Transparent WO 3 /Ag/WO 3 electrode for flexible organic solar cells. Materials Letters, 2017, 188, 107-110.	2.6	27
177	Tunable emission and conductivity enhancement by tellurium doping in CdS nanowires for optoelectronic applications. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 81-87.	2.7	10
178	Efficiency enhancement of organic solar cells by inserting PbS quantum dots film as the infrared absorption layer. Materials Letters, 2017, 187, 136-139.	2.6	13
179	Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons. Applied Sciences (Switzerland), 2017, 7, 39.	2.5	10
180	Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology, 2016, 27, 065201.	2.6	23

#	Article	IF	Citations
181	Curvature effects in two-dimensional optical devices inspired by transformation optics. Applied Physics Letters, 2016, 109, 201105.	3.3	1
182	Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. ACS Applied Materials & Spectroscopy Stu	8.0	59
183	Electric field modulation of the band gap, dielectric constant and polarizability in SnS atomically thin layers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2227-2232.	2.1	19
184	Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts. Journal of Nanoscience and Nanotechnology, 2016, 16, 4086-4093.	0.9	2
185	High performance solution-processed infrared photodetector based on PbSe quantum dots doped with low carrier mobility polymer poly(N-vinylcarbazole). RSC Advances, 2016, 6, 44514-44521.	3.6	41
186	Influence of the active layer nanomorphology on device performance for ternary PbS $<$ sub $<$ i $>x<$ ii $><$ isub $>$ Se $<$ sub $>$ 1â $^2<$ ii $><$ (sub $>$ quantum dots based solution-processed infrared photodetector. Nanotechnology, 2016, 27, 165202.	2.6	17
187	Bosonic Lasing from Collective Exciton Magnetic Polarons in Diluted Magnetic Nanowires and Nanobelts. ACS Photonics, 2016, 3, 1809-1817.	6.6	48
188	In Situ Fabrication of Halide Perovskite Nanocrystalâ€Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Advanced Materials, 2016, 28, 9163-9168.	21.0	635
189	High performance solution-processed infrared photodiode based on ternary PbS _x Se _{1â^'x} colloidal quantum dots. RSC Advances, 2016, 6, 87730-87737.	3.6	38
190	Transmission comb of a distributed Bragg reflector with two surface dielectric gratings. Scientific Reports, 2016, 6, 21125.	3.3	4
191	The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint. Scientific Reports, 2016, 6, 34495.	3.3	9
192	Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. Scientific Reports, 2016, 6, 33867.	3.3	26
193	Hydroxyl-Terminated CulnS ₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.	6.7	155
194	A solvothermal route to synthesize kesterite Cu2ZnSnS4 nanocrystals for solution-processed solar cells. Journal of Alloys and Compounds, 2016, 663, 617-623.	5.5	17
195	Oleylamineâ€Assisted Phaseâ€Selective Synthesis of Cu _{2â°'<i>x</i>} S Nanocrystals and the Mechanism of Phase Control. Particle and Particle Systems Characterization, 2015, 32, 907-914.	2.3	41
196	Suppression of space broadening of exciton polariton transport by Bloch oscillation effect. Journal of Optics (United Kingdom), 2015, 17, 125401.	2.2	2
197	Emulsion Synthesis of Size-Tunable CH ₃ NH ₃ PbBr ₃ Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Applied Materials & Diodes, 7, 28128-28133.	8.0	429
198	Pentacene-Based Photodetector in Visible Region With Vertical Field-Effect Transistor Configuration. IEEE Photonics Technology Letters, 2015, 27, 233-236.	2.5	31

#	Article	IF	Citations
199	Solution-Processed PbSe Colloidal Quantum Dot-Based Near-Infrared Photodetector. IEEE Photonics Technology Letters, 2015, 27, 612-615.	2.5	39
200	Large-area photodetector with high-sensitivity and broadband spectral response based on composition-graded CdSSe nanowire-chip. Journal of Alloys and Compounds, 2015, 649, 793-800.	5.5	16
201	Small GSH-Capped CulnS ₂ Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17623-17629.	8.0	91
202	Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires. Applied Physics A: Materials Science and Processing, 2015, 119, 343-349.	2.3	11
203	Brightly Luminescent and Color-Tunable Colloidal CH ₃ NH ₃ PbX ₃ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015, 9, 4533-4542.	14.6	2,001
204	Ray-trace simulation of CulnS(Se)_2 quantum dot based luminescent solar concentrators. Optics Express, 2015, 23, A858.	3.4	48
205	Performance Enhancement of FET-Based Photodetector by Blending P3HT With PMMA. IEEE Photonics Technology Letters, 2015, 27, 1535-1538.	2.5	17
206	Template Synthesis of CulnS ₂ Nanocrystals from In ₂ S ₃ Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 5949-5956.	6.7	132
207	Probing Exciton Move and Localization in Solution-Grown Colloidal CdSe _{<i>x</i>} S _{1–<i>x</i>} Alloyed Nanowires by Temperature- and Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 22709-22717.	3.1	12
208	Synthesis of Novel Sea-Urchin-Like CdS and Their Optical Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 4435-4441.	0.9	6
209	Aggregationâ€Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications. Advanced Optical Materials, 2015, 3, 112-119.	7.3	87
210	Enhancement of the power conversion efficiency of polymer solar cells by incorporating PbSe quantum dots. Journal of Materials Science, 2015, 50, 840-847.	3.7	9
211	Ultralong Homogeneously Alloyed CdSe _x S _{1â€x} Nanowires with Highly Polarized and Colorâ€īunable Emissions. Advanced Optical Materials, 2014, 2, 885-891.	7.3	18
212	Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities. Journal of Applied Physics, 2014, 115, .	2.5	1
213	Effects of non- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î</mml:mi></mml:math> coupling between one-dimensional waveguides and side optical cavities. Physical Review A, 2014, 89, .	2.5	11
214	The length controllable synthesis and near-infrared photoluminescence of one-dimensional ternary Cu4Bi4S9 semiconductor nanobelts. Materials Research Bulletin, 2014, 49, 180-186.	5.2	5
215	Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A: Materials Science and Processing, 2014, 116, 1511-1516.	2.3	20
216	Towards optimization of functionalized single-walled carbon nanotubes adhering with poly(3-hexylthiophene) for highly efficient polymer solar cells. Diamond and Related Materials, 2014, 41, 79-83.	3.9	18

#	Article	IF	Citations
217	Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core–shell colloidal quantum dots. Journal of Materials Science, 2014, 49, 2571-2577.	3.7	9
218	Visual monitoring of laser power and spot profile in micron region by a single chip of Zn-doped CdS nanobelts. RSC Advances, 2014, 4, 52550-52554.	3.6	9
219	Pâ€80: Intelligent Remote Lightâ€Emitting Systems using PMMA and CuInS ₂ Nanocrystals Composite Films. Digest of Technical Papers SID International Symposium, 2014, 45, 1285-1287.	0.3	1
220	Water-soluble, highly emissive, color-tunable, and stable Cu-doped ZnSeS/ZnS core/shell nanocrystals. CrystEngComm, 2014, 16, 3414.	2.6	24
221	Thermal Annealing Effects of Plasmonic Cu _{1.8} S Nanocrystal Films and Their Photovoltaic Properties. Journal of Physical Chemistry C, 2014, 118, 26964-26972.	3.1	42
222	Synthesis and characterization of zinc sulfide nanobelts with periodically modulated thickness. Materials Letters, 2014, 132, 224-227.	2.6	4
223	Tunable emission properties by ferromagnetic coupling Mn(II) aggregates in Mn-doped CdS microbelts/nanowires. Nanotechnology, 2014, 25, 385201.	2.6	57
224	Magnetic Exciton Relaxation and Spin–Spin Interaction by the Time-Delayed Photoluminescence Spectra of ZnO:Mn Nanowires. ACS Applied Materials & Spectra of ZnO:Mn Nanowires. ACS Applied Ma	8.0	24
225	Yellow-light generation and engineering in zinc-doped cadmium sulfide nanobelts with low-threshold two-photon excitation. Nanotechnology, 2014, 25, 325702.	2.6	4
226	Negative differential resistance phenomena in colloidal quantum dots-based organic light-emitting diodes. Applied Physics Letters, 2014, 104, 033301.	3.3	5
227	Multi-Band-Stop Filter for Single-Photon Transport Based on a One-Dimensional Waveguide Side Coupled with Optical Cavities. Plasmonics, 2014, 9, 1085-1089.	3.4	5
228	Preparation of Fe3O4-Embedded Graphene Oxide for Removal of Methylene Blue. Arabian Journal for Science and Engineering, 2014, 39, 6679-6685.	1.1	29
229	PVA Hydrogel Embedded with Quantum Dots: A Potential Scalable and Healable Display Medium for Holographic 3D Applications. Advanced Optical Materials, 2014, 2, 338-342.	7. 3	23
230	Photoluminescence and Magnetic Properties of Mn-Doped ZnS Nanobelts. Nanoscience and Nanotechnology Letters, 2014, 6, 706-710.	0.4	11
231	Large-Scale Synthesis of Highly Pure Novel Cadmium Semi-Spheres and Their Anomalous Optical Properties. Science of Advanced Materials, 2014, 6, 2666-2672.	0.7	2
232	General Synthesis and White Light Emission of Diluted Magnetic Semiconductor Nanowires Using Single-Source Precursors. Chemistry of Materials, 2013, 25, 3260-3266.	6.7	24
233	Near Infrared Emission Band and Origin in Ni(II)-Doped CdS Nanoribbons by CVD Technique. Journal of Physical Chemistry C, 2013, 117, 17777-17785.	3.1	52
234	The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts. Nanoscale Research Letters, 2013, 8, 314.	5.7	12

#	Article	IF	CITATIONS
235	Controllable Transformation from Rhombohedral Cu _{1.8} S Nanocrystals to Hexagonal CuS Clusters: Phase- and Composition-Dependent Plasmonic Properties. Chemistry of Materials, 2013, 25, 4828-4834.	6.7	135
236	To observe bidirectional negative differential resistance at room temperature by narrowing transport channels for charge carriers in vertical organic light-emitting transistor. Organic Electronics, 2013, 14, 362-369.	2.6	3
237	Surface polarity induced three-dimensional wurtzite ZnS/ZnSxSe1â^'x nano-heterostructures with integrating emission property. CrystEngComm, 2013, 15, 9988.	2.6	3
238	Structure and optical properties of pure and doped ZnO 1D nanostructures. Materials Letters, 2013, 91, 369-371.	2.6	13
239	Synthesis and photoluminescence of pure and Mn doped CdS nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 162-166.	2.7	19
240	Tuning emission property of CdS nanowires via indium doping. Journal of Alloys and Compounds, 2013, 551, 150-154.	5 . 5	9
241	Integration of CulnS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 2013, 5, 3514.	5.6	145
242	Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology, 2013, 24, 055201.	2.6	24
243	Fabrication and optical waveguide of Sn-catalyzed CdSe microstructures. Solid State Communications, 2013, 167, 31-35.	1.9	4
244	Group delay of single-photon transmission in a waveguide side coupled with a Jaynes-Cummings chain. Journal of Applied Physics, 2013, 113, 143105.	2.5	10
245	Single-Step Synthesis of Monolithic Comb-like CdS Nanostructures with Tunable Waveguide Properties. Nano Letters, 2013, 13, 2997-3001.	9.1	47
246	In Situ Aggregation of ZnSe Nanoparticles into Supraparticles: Shape Control and Doping Effects. Langmuir, 2013, 29, 1970-1976.	3.5	19
247	Red emissive CulnS_2-based nanocrystals: a potential phosphor for warm white light-emitting diodes. Optics Express, 2013, 21, 10105.	3.4	55
248	Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference. Optics Express, 2013, 21, 5140.	3.4	9
249	Synthesis of Poly(acrylic acid) Coated-Fe ₃ O ₄ Superparamagnetic Nano-Composites and Their Fast Removal of Dye from Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2013, 13, 4627-4633.	0.9	22
250	Enhanced Photocurrent from Organic Polymers-Based Photodiodes by Blending PbS Colloidal Quantum Dots. Journal of Nanoscience and Nanotechnology, 2013, 13, 1163-1167.	0.9	0
251	Tailoring of optical modes of semiconductor microcavities via metal and dielectric gratings. Optics Letters, 2012, 37, 5085.	3.3	3
252	Labeling of Hematopoietic Stem Cells by Tat Peptide Conjugated Quantum Dots for Cell Tracking in Mouse Body. Journal of Nanoscience and Nanotechnology, 2012, 12, 6880-6886.	0.9	5

#	Article	IF	Citations
253	Tuning the Luminescence Properties of Colloidal Iâ \in "IlIâ \in "VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. Journal of Physical Chemistry Letters, 2012, 3, 3167-3175.	4.6	402
254	Transition from Photoconductivity to Photovoltaic Effect in P3HT/CulnSe ₂ Composites. Journal of Physical Chemistry C, 2012, 116, 7280-7286.	3.1	43
255	Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region. Nanotechnology, 2012, 23, 255203.	2.6	39
256	Diamagnetism of microcavity polaritons induced by spin-dependent polariton–polariton interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3332-3336.	2.1	5
257	One dimensional ternary Cu–Bi–S based semiconductor nanowires: synthesis, optical and electrical properties. Journal of Materials Chemistry, 2012, 22, 17813.	6.7	27
258	Highly Emissive and Colorâ€Tunable CuInS ₂ â€Based Colloidal Semiconductor Nanocrystals: Offâ€Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials, 2012, 22, 2081-2088.	14.9	449
259	Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters, 2012, 66, 72-75.	2.6	97
260	Conjugated Polymer-Assisted Preparation of CdSe Nanospheres and Their Photovoltaic Properties. Science of Advanced Materials, 2012, 4, 342-345.	0.7	11
261	Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity. Journal of Physical Chemistry C, 2011, 115, 2769-2775.	3.1	175
262	Single-Crystalline Cu ₄ Bi ₄ S ₉ Nanoribbons: Facile Synthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chemistry of Materials, 2011, 23, 1299-1305.	6.7	58
263	Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures. Journal of Physical Chemistry C, 2011, 115, 1415-1421.	3.1	33
264	Visible whispering-gallery modes in ZnO microwires with varied cross sections. Journal of Applied Physics, $2011,110,110$	2.5	17
265	Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties. Applied Surface Science, 2011, 257, 10898-10902.	6.1	28
266	Synthesis and photoluminescence of wurtzite CdS and ZnS architectural structures via a facile solvothermal approach in mixed solvents. Journal of Alloys and Compounds, 2011, 509, 9959-9963.	5.5	15
267	Synthesis and growth mechanism of triangular Mn doped CdS nanowires. Materials Letters, 2011, 65, 2522-2525.	2.6	14
268	Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 3005-3010.	3.1	96
269	Fast and Considerable Adsorption of Methylene Blue Dye onto Graphene Oxide. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 86-90.	2.7	275
270	Stable optical-signal emitter based on a semiconductor photonic dot. Journal of Applied Physics, 2011, 109, 063107.	2.5	1

#	Article	IF	CITATIONS
271	FACILE SYNTHESIS OF HUMIC ACID-COATED IRON OXIDE NANOPARTICLES AND THEIR APPLICATIONS IN WASTEWATER TREATMENT. Functional Materials Letters, 2011, 04, 373-376.	1.2	12
272	Sn-catalyst growth and optical waveguide of ultralong CdS nanowires. Chemical Physics Letters, 2010, 497, 85-88.	2.6	16
273	Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires. Nano Research, 2010, 3, 326-338.	10.4	38
274	Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure. Materials Chemistry and Physics, 2010, 124, 1239-1242.	4.0	13
275	Synthesis, characterization and optical properties of star-like ZnO nanostructures. Materials Letters, 2010, 64, 898-900.	2.6	35
276	Facile preparation of TiO2 nanostructures by direct annealing of the Ti foil. Materials Letters, 2010, 64, 2392-2394.	2.6	5
277	Photoluminescence and Raman analysis of novel ZnO tetrapod and multipod nanostructures. Applied Surface Science, 2010, 256, 6814-6818.	6.1	32
278	FULVIC ACID COATED IRON OXIDE NANOPARTICLES FOR MAGNETIC RESONANCE IMAGING CONTRAST AGENT. Functional Materials Letters, 2010, 03, 197-200.	1.2	8
279	Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOxNanowires. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	7
280	Magnetic-field modulated exciton-exciton interaction in semiconductor microcavities. Journal of Applied Physics, 2010, 107, 053527.	2.5	5
281	Self-Assembled Synthesis and Characterization of Dandelion-Like and Flower-Like Cupric Oxide Nanostructures. Nanoscience and Nanotechnology Letters, 2010, 2, 35-40.	0.4	0
282	Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chemistry of Materials, 2010, 22, 2107-2113.	6.7	144
283	Hierarchical SnO ₂ Nanostructures: Linear Assembly of Nanorods on the Nanowire Backbones. Journal of Physical Chemistry C, 2010, 114, 1844-1848.	3.1	33
284	Preparation and Periodic Emission of Superlattice CdS/CdS:SnS2 Microwires. Journal of the American Chemical Society, 2010, 132, 12174-12175.	13.7	36
285	The large-scale synthesis of one-dimensional TiO ₂ nanostructures using palladium as catalyst at low temperature. Nanotechnology, 2009, 20, 055605.	2.6	15
286	Ordered CdS micro/nanostructures on CdSe nanostructures. Nanotechnology, 2009, 20, 125601.	2.6	14
287	Eu3+-doped LaPO4 and LaAlO3 nanosystems and their luminescence properties. Science in China Series B: Chemistry, 2009, 52, 1104-1112.	0.8	12
288	Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip. Nano Letters, 2009, 9, 784-788.	9.1	191

#	Article	IF	CITATIONS
289	Bound Exciton and Optical Properties of SnO ₂ One-Dimensional Nanostructures. Journal of Physical Chemistry C, 2009, 113, 1719-1726.	3.1	66
290	Aqueous synthesis of type-II CdTe/CdSe core–shell quantum dots for fluorescent probe labeling tumor cells. Nanotechnology, 2009, 20, 095102.	2.6	45
291	Comparison of the Optical Waveguide Behaviors of Se-Doped and Undoped CdS Nanoribbons by Using Near-Field Optical Microscopy. Journal of Nanoscience and Nanotechnology, 2009, 9, 978-981.	0.9	2
292	Applications of Fluorescent Quantum Dots to Stem Cell Tracing <l>ln Vivo</l> . Journal of Nanoscience and Nanotechnology, 2009, 9, 5726-5730.	0.9	9
293	Third order optical nonlinearities in ZnFe2O4 nanocrystals. Optics Communications, 2008, 281, 851-854.	2.1	3
294	Incorporating fluorescent quantum dots into water-soluble polymer. Journal of Luminescence, 2008, 128, 277-281.	3.1	19
295	Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. Journal of Physical Chemistry C, 2008, 112, 17546-17553.	3.1	29
296	Applications of Mesenchymal Stem Cells Labeled with Tat Peptide Conjugated Quantum Dots to Cell Tracking in Mouse Body. Bioconjugate Chemistry, 2008, 19, 421-427.	3.6	115
297	Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates. Journal of Physical Chemistry C, 2008, 112, 9253-9260.	3.1	45
298	Si-CdSSe Core/Shell Nanowires with Continuously Tunable Light Emission. Nano Letters, 2008, 8, 3413-3417.	9.1	58
299	One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires. Journal Physics D: Applied Physics, 2008, 41, 135301.	2.8	22
300	Spherical hexagonal tellurium nanocrystals: fabrication and size-dependent structural phase transition at high pressure. Nanotechnology, 2008, 19, 045707.	2.6	9
301	Observation of delayed fluorescence in CdSxSe1â^'x nanobelts by femtosecond time-resolved fluorescence spectroscopy. Applied Physics Letters, 2008, 92, .	3.3	17
302	Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. Nanotechnology, 2007, 18, 305705.	2.6	28
303	Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth. New Journal of Physics, 2007, 9, 214-214.	2.9	57
304	Phonon-assisted stimulated emission in Mn-doped ZnO nanowires. Journal of Physics Condensed Matter, 2007, 19, 136206.	1.8	28
305	PHOTOLUMINESCENCE EMITTING PROPERTIES OF SINGLE ZnO NANOWIRE STUDIED BY SCANNING NEAR-FIELD OPTICAL MICROSCOPE. Modern Physics Letters B, 2007, 21, 543-549.	1.9	5
306	Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 7655-7660.	3.1	62

#	Article	IF	Citations
307	Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts. Journal of Physical Chemistry C, 2007, 111 , $14253-14256$.	3.1	33
308	Color-Changeable Optical Transport through Se-Doped CdS 1D Nanostructures. Nano Letters, 2007, 7, 2970-2975.	9.1	65
309	The Photoelectric Response of Goldâ€Nanoparticle Monolayers. ChemPhysChem, 2007, 8, 1611-1614.	2.1	7
310	Stimulated emission from trapped excitons in SnO2 nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 39, 223-229.	2.7	32
311	Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3. Journal of Luminescence, 2007, 126, 459-463.	3.1	49
312	The optical properties of ZnO sheets electrodeposited on ITO glass. Materials Letters, 2007, 61, 2000-2003.	2.6	57
313	A simple and cheap way to produce porous ZnO ribbons and their photovoltaic response. Materials Letters, 2007, 61, 4459-4462.	2.6	18
314	High-Quality Alloyed CdSxSe1-xWhiskers as Waveguides with Tunable Stimulated Emission. Journal of Physical Chemistry B, 2006, 110, 22313-22317.	2.6	56
315	Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature. Journal of Physical Chemistry B, 2006, 110, 12865-12873.	2.6	120
316	A Simple Solution Route to Single-Crystalline Sb2O3Nanowires with Rectangular Cross Sections. Journal of Physical Chemistry B, 2006, 110, 18225-18230.	2.6	95
317	Preparation of Single-crystalline Selenium Nanowires in the Presence of Ethylenediaminetetramethylenephosphonic Acid. Chemistry Letters, 2006, 35, 330-331.	1.3	1
318	Cobalt-doped disulfide nanotubes prepared by exfoliation–intercalation–hydrothermal adulteration. Materials Letters, 2006, 60, 815-819.	2.6	4
319	Synthesis of PbS microcrystals via a hydrothermal process. Materials Letters, 2006, 60, 1242-1246.	2.6	36
320	A Clean Route for Preparation of CdTe Nanocrystals and Their Conjugation with Bacterium. Journal of Nanoscience and Nanotechnology, 2006, 6, 3784-3788.	0.9	13
321	Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons. Nanotechnology, 2006, 17, 1083-1086.	2.6	67
322	Size effect on the electron–phonon coupling in CuO nanocrystals. Nanotechnology, 2006, 17, 1099-1103.	2.6	48
323	ZnO flowers made up of thin nanosheets and their optical properties. Journal of Crystal Growth, 2005, 282, 165-172.	1.5	128
324	A New Route to Zinc-Blende CdSe Nanocrystals:  Mechanism and Synthesis. Journal of Physical Chemistry B, 2005, 109, 16671-16675.	2.6	285

#	Article	IF	Citations
325	Stimulated Emissions in Aligned CdS Nanowires at Room Temperature. Journal of Physical Chemistry B, 2005, 109, 24268-24272.	2.6	153
326	Optical Waveguide through CdS Nanoribbons. Small, 2005, 1, 980-983.	10.0	193
327	Thermal Stability and Lasing of CdS Nanowires Coated by Amorphous Silica. Small, 2005, 1, 1058-1062.	10.0	45
328	Surface crystallization effects on the optical and electric properties of CdS nanorods. Nanotechnology, 2005, 16, 2402-2406.	2.6	20
329	Exciton interactions in CdS nanocrystal aggregates in reverse micelle. Journal of Chemical Physics, 2005, 123, 024702.	3.0	18
330	Color-Tunable Photoluminescence of Alloyed CdSxSe1-xNanobelts. Journal of the American Chemical Society, 2005, 127, 15692-15693.	13.7	221
331	Ultraviolet lasing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays. Applied Physics Letters, 2005, 86, 223106.	3.3	73
332	Carrier density and confined polaron effects in the photoluminescence of fresh and oxidized porous silicon. Surface and Interface Analysis, 2004, 36, 166-171.	1.8	2
333	Formation and spectroscopic characterization of nearly mono-dispersed Cds nanocrystals. Optical Materials, 2004, 26, 71-74.	3.6	8
334	Time-resolved spectroscopic behavior of Fe2O3 and ZnFe2O4 nanocrystals. Journal of Chemical Physics, 2004, 120, 3406-3413.	3.0	31
335	Laser emission of low-threshold excitation from ZnO nanowires. Europhysics Letters, 2004, 68, 740-745.	2.0	23
336	Photochromism and Size Effect of WO3and WO3â^'TiO2Aqueous Sol. Chemistry of Materials, 2003, 15, 4039-4045.	6.7	159
337	Electrical properties and phase transition of CoFe2O4 nanocrystals under pressure. Journal of Applied Physics, 2003, 93, 9983-9987.	2.5	28
338	Solâ^'Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles. Journal of the American Chemical Society, 2001, 123, 4344-4345.	13.7	152
339	Interfacial polaron in quantum dots and luminescent porous silicon. Science Bulletin, 2001, 46, 630-635.	1.7	6
340	Origin of emission from porous silicon:â€fTemperature-dependence correlation with proton conductivity. Physical Review B, 2000, 62, 16595-16599.	3.2	12
341	Photoinduced vibrational absorptions from poly(3-octylthiophene)/Fe2O3 nanoparticle composite, a time-resolved FTIR study. Synthetic Metals, 2000, 113, 223-226.	3.9	6
342	Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites. Journal of Physical Chemistry B, 2000, 104, 1141-1145.	2.6	349

#	Article	IF	CITATIONS
343	Chemical Control of Superparamagnetic Properties of Magnesium and Cobalt Spinel Ferrite Nanoparticles through Atomic Level Magnetic Couplings. Journal of the American Chemical Society, 2000, 122, 6263-6267.	13.7	411
344	Time-resolved Fourier-transform infrared and visible luminescence spectroscopy of photoexcited porous silicon. Physical Review B, 1999, 59, 5026-5031.	3.2	25
345	Nonresonant optical nonlinearity of ZnO composite nanoparticles with different interfacial chemical environments. Materials Research Innovations, 1998, 2, 49-52.	2.3	8
346	Image storage based on biphotonic holography in azo/polymer system. Applied Physics Letters, 1998, 72, 418-420.	3.3	20
347	Transient biphotonic holographic grating in photoisomerizative azo materials. Physical Review B, 1998, 57, 3874-3880.	3.2	34
348	The effects of different interfacial environments on the optical nonlinearity of nanometer-sized CdO organosol. Applied Physics Letters, 1997, 71, 2097-2099.	3.3	31
349	Biphotonic self-diffraction in azo-doped polymer film. Applied Physics Letters, 1997, 70, 1224-1226.	3.3	24
350	Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. Journal of Physics and Chemistry of Solids, 1997, 58, 1315-1320.	4.0	45
351	Ultrafast optical bistable behaviors of vanadyl phthalocyanine-doped polymer film quasi-waveguide and waveguide. Thin Solid Films, 1997, 298, 215-220.	1.8	8
352	Picosecond optical bistability in metallophthalocyanine-doped polymer film waveguides. Optics Letters, 1996, 21, 357.	3.3	9
353	Excitonic properties of Cu2O microcrystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 182, 130-134.	2.1	2
354	Selfâ€trapped state and phonon localization in TiO2quantum dot with a dipole layer. Journal of Applied Physics, 1993, 73, 4689-4690.	2.5	8
355	Formation of nanoparticulate iron(III) oxide-stearate multilayer through Langmuir-Blodgett method. The Journal of Physical Chemistry, 1992, 96, 3412-3415.	2.9	91