Lars J Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364426/publications.pdf

Version: 2024-02-01

414303 394286 13,456 33 19 32 citations h-index g-index papers 33 33 33 24740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47, D607-D613.	6.5	12,237
2	Transient Receptor Potential Channels in Cardiovascular Function and Disease. Circulation Research, 2006, 99, 119-131.	2.0	353
3	Synergistic Activation of Vascular TRPC6 Channel by Receptor and Mechanical Stimulation via Phospholipase C/Diacylglycerol and Phospholipase A ₂ /ï‰-Hydroxylase/20-HETE Pathways. Circulation Research, 2009, 104, 1399-1409.	2.0	140
4	Localization of Sodium Bicarbonate Cotransporter (NBC) Protein and Messenger Ribonucleic Acid in Rat Epididymis1. Biology of Reproduction, 1999, 60, 573-579.	1.2	71
5	Expression of connexinÂ37, 40 and 43 in rat mesenteric arterioles and resistance arteries. Histochemistry and Cell Biology, 2003, 119, 139-148.	0.8	69
6	Immunolocalization of AE2 Anion Exchanger in Rat and Mouse Epididymis1. Biology of Reproduction, 1999, 61, 973-980.	1.2	47
7	Myogenic tone is impaired at low arterial pressure in mice deficient in the lowâ€voltageâ€activated <scp>C</scp> a _V 3.1 <scp>T</scp> â€type <scp>C</scp> a ²⁺ channel. Acta Physiologica, 2013, 207, 709-720.	1.8	45
8	The Role of L- and T-Type Calcium Channels in Local and Remote Calcium Responses in Rat Mesenteric Terminal Arterioles. Journal of Vascular Research, 2009, 46, 138-151.	0.6	44
9	Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels. British Journal of Pharmacology, 2004, 142, 709-718.	2.7	43
10	Proton Pump Activity of Mitochondria-rich Cells. Journal of General Physiology, 1997, 109, 73-91.	0.9	33
11	BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles. Pflugers Archiv European Journal of Physiology, 2012, 463, 279-295.	1.3	31
12	The Vascular Conducted Response in Cerebral Blood Flow Regulation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 649-656.	2.4	31
13	Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ. Pflugers Archiv European Journal of Physiology, 2010, 460, 41-53.	1.3	29
14	Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? This article is part of a Special Issue on Information Transfer in the Microcirculation Canadian Journal of Physiology and Pharmacology, 2009, 87, 8-20.	0.7	26
15	Ageâ€dependent impact of Ca _V 3.2 Tâ€type calcium channel deletion on myogenic tone and flowâ€mediated vasodilatation in small arteries. Journal of Physiology, 2016, 594, 5881-5898.	1.3	26
16	Proton pump-driven cutaneous chloride uptake in anuran amphibia. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 120-132.	1.4	25
17	Vascular calcium signalling and ageing. Journal of Physiology, 2021, 599, 5361-5377.	1.3	22
18	Applicability of Cable Theory to Vascular Conducted Responses. Biophysical Journal, 2012, 102, 1352-1362.	0.2	21

#	Article	IF	Citations
19	Na ⁺ â€independent, nifedipineâ€resistant rat afferent arteriolar Ca ²⁺ responses to noradrenaline: possible role of TRPC channels. Acta Physiologica, 2010, 200, 265-278.	1.8	19
20	Proton pump activity is required for active uptake of chloride in isolated amphibian skin exposed to freshwater. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2002, 172, 503-511.	0.7	18
21	Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles In vivo. BMC Physiology, 2013, 13, 8.	3.6	18
22	PIP2 modulation of Slick and Slack K+ channels. Biochemical and Biophysical Research Communications, 2012, 424, 208-213.	1.0	16
23	Effect of TRPA1 activator allyl isothiocyanate (AITC) on rat dural and pial arteries. Pharmacological Reports, 2019, 71, 565-572.	1.5	15
24	Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels. Clinical Science, 2018, 132, 461-474.	1.8	14
25	Hepatic Oxidative Stress, Genotoxicity and Vascular Dysfunction in Lean or Obese Zucker Rats. PLoS ONE, 2015, 10, e0118773.	1.1	13
26	Role of age, Rho-kinase 2 expression, and G protein-mediated signaling in the myogenic response in mouse small mesenteric arteries. Physiological Reports, 2018, 6, e13863.	0.7	13
27	Hyperglycemia-induced transcriptional regulation of ROCK1 and TGM2 expression is involved in small artery remodeling in obese diabetic Göttingen Minipigs. Clinical Science, 2019, 133, 2499-2516.	1.8	11
28	T-type Ca ²⁺ channels and autoregulation of local blood flow. Channels, 2017, 11, 183-195.	1.5	9
29	Functional network analysis of obese and lean Göttingen minipigs elucidates changes in oxidative and inflammatory networks in obese pigs. Pflugers Archiv European Journal of Physiology, 2014, 466, 2167-2176.	1.3	6
30	Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice. Mechanisms of Ageing and Development, 2021, 200, 111594.	2.2	5
31	No apparent role for T-type Ca2+ channels in renal autoregulation. Pflugers Archiv European Journal of Physiology, 2016, 468, 541-550.	1.3	4
32	Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na2S. Cephalalgia, 2020, 40, 1310-1320.	1.8	2
33	Diet-induced hypertension in rats is associated with increased renal vasoconstrictor response to angiotensin II after imitated endothelial dysfunction. Microvascular Research, 2022, 141, 104333.	1.1	0