Xiao-Ming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chemical Reviews, 2014, 114, 5572-5610.	47.7	430
2	Nanoscale Metal–Organic-Frameworks Coated by Biodegradable Organosilica for pH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 20678-20688.	8.0	62
3	Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-Nâ€2-phenyl-thiourea. Bioorganic and Medicinal Chemistry, 2011, 19, 5708-5715.	3.0	53
4	Synthesis and antitumor activity of 1,3,4-oxadiazole possessing 1,4-benzodioxan moiety as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2876-2879.	2.2	44
5	Identification of new shikonin derivatives as STAT3 inhibitors. Biochemical Pharmacology, 2017, 146, 74-86.	4.4	43
6	Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2010-2018.	3.0	42
7	Synthesis, biological evaluation, and molecular docking studies of 1,3,4-thiadiazol-2-amide derivatives as novel anticancer agents. Bioorganic and Medicinal Chemistry, 2012, 20, 2789-2795.	3.0	38
8	Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacological Research, 2016, 104, 86-96.	7.1	38
9	Salmonella produce microRNA-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival. Scientific Reports, 2017, 7, 2392.	3.3	37
10	Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4066-4074.	2.2	35
11	Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain. Scientific Reports, 2017, 7, 2863.	3.3	33
12	Design and characterization of $\hat{I}\pm$ -lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. European Journal of Medicinal Chemistry, 2018, 144, 137-150.	5.5	32
13	Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: An implications for conservation of local mulberry varieties. Scientia Horticulturae, 2007, 115, 47-55.	3.6	31
14	New N-terminal prolyl-dipeptide derivatives as organocatalysts for direct asymmetric aldol reaction. Tetrahedron Letters, 2006, 47, 7793-7796.	1.4	29
15	Design, synthesis and antimicrobial activities evaluation of Schiff base derived from secnidazole derivatives as potential FabH inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 3120-3126.	3.0	29
16	Design, Synthesis and Biological Evaluation of Cinnamic Acyl Shikonin Derivatives. Chemical Biology and Drug Design, 2013, 81, 275-283.	3.2	28
17	Novel Shikonin Derivatives Targeting Tubulin as Anticancer Agents. Chemical Biology and Drug Design, 2014, 84, 603-615.	3.2	27
18	Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3237-3242.	2.2	24

XIAO-MING WANG

#	Article	IF	CITATIONS
19	Preparation, cellular uptake and angiogenic suppression of shikonin-containing liposomes inÂvitro and inÂvivo. Bioscience Reports, 2013, 33, e00020.	2.4	23
20	Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochemical Pharmacology, 2015, 96, 93-106.	4.4	23
21	Design, Synthesis, and Biological Evaluation of Chalcone ontaining Shikonin Derivatives as Inhibitors of Tubulin Polymerization. ChemMedChem, 2017, 12, 399-406.	3.2	23
22	Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: new anti-tubulin agents. RSC Advances, 2014, 4, 49796-49805.	3.6	21
23	Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism. Biomedicine and Pharmacotherapy, 2017, 93, 636-645.	5.6	21
24	The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF-11±-mediated apoptosis. Biomedicine and Pharmacotherapy, 2018, 97, 656-666.	5.6	21
25	Shikonin and 4-hydroxytamoxifen synergistically inhibit the proliferation of breast cancer cells through activating apoptosis signaling pathway in vitro and in vivo. Chinese Medicine, 2020, 15, 23.	4.0	20
26	An imidazo[1,5-α]pyridine-derivated fluorescence sensor for rapid and selective detection of sulfite. Talanta, 2020, 217, 121087.	5.5	20
27	Oxadiazole derivatives containing 1,4-benzodioxan as potential immunosuppressive agents against RAW264.7 cells. Bioorganic and Medicinal Chemistry, 2011, 19, 4895-4902.	3.0	19
28	Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Advances, 2014, 4, 35588.	3.6	19
29	Synthesis and Biological Evaluation of Heterocyclic Carboxylic Acyl Shikonin Derivatives. Chemical Biology and Drug Design, 2014, 83, 334-343.	3.2	18
30	Overexpression of LeMYB1 enhances shikonin formation by up-regulating key shikonin biosynthesis-related genes in Lithospermum erythrorhizon. Biologia Plantarum, 2015, 59, 429-435.	1.9	17
31	Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Molecular Biology, 2016, 90, 345-358.	3.9	17
32	Synthesis and Antimicrobial Activities of Oximes Derived from <i>O</i> â€Benzylhydroxylamine as FabH Inhibitors. ChemMedChem, 2012, 7, 1587-1593.	3.2	16
33	Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR. Bioorganic and Medicinal Chemistry, 2019, 27, 115153.	3.0	16
34	Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biology, 2016, 16, 121.	3.6	15
35	Design, synthesis, biological evaluation, and 3Dâ€ <scp>QSAR</scp> analysis of podophyllotoxin–dioxazole combination as tubulin targeting anticancer agents. Chemical Biology and Drug Design, 2017, 90, 236-243.	3.2	15
36	Design and Synthesis of Fluoroacylshikonin as an Anticancer Agent. Chirality, 2013, 25, 757-762.	2.6	14

XIAO-MING WANG

#	Article	IF	CITATIONS
37	Design, synthesis and mechanism of novel shikonin derivatives as potent anticancer agents. RSC Advances, 2015, 5, 31759-31767.	3.6	14
38	Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorganic Chemistry, 2021, 111, 104872.	4.1	14
39	Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface. Journal of Physical Chemistry Letters, 2020, 11, 9184-9194.	4.6	14
40	Design, synthesis, evaluation and 3D-QSAR analysis of benzosulfonamide benzenesulfonates as potent and selective inhibitors of MMP-2. RSC Advances, 2014, 4, 39214.	3.6	13
41	Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis. PeerJ, 2021, 9, e10675.	2.0	13
42	Semi-synthesis and anti-lung cancer activity evaluation of aryl dihydrothiazol acyl podophyllotoxin ester derivatives. RSC Advances, 2015, 5, 27775-27784.	3.6	12
43	Synthesis, characterization and biological evaluation of formononetin derivatives as novel EGFR inhibitors <i>via</i> inhibiting growth, migration and inducing apoptosis in breast cancer cell line. RSC Advances, 2017, 7, 48404-48419.	3.6	12
44	Involvement of LeMDR, an ATP-binding cassette protein gene, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. BMC Plant Biology, 2017, 17, 198.	3.6	12
45	Molecular cloning, characterization, and expression analysis of LeMYB1 from Lithospermum erythrorhizon. Biologia Plantarum, 2014, 58, 436-444.	1.9	11
46	Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorganic and Medicinal Chemistry, 2019, 27, 1509-1516.	3.0	11
47	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	1.6	10
48	Novel Podophyllotoxin Derivatives as Potential Tubulin Inhibitors: Design, Synthesis, and Antiproliferative Activity Evaluation. Chemistry and Biodiversity, 2018, 15, e1800289.	2.1	10
49	Synthesis of novel aryl dithian valeryl podophyllotoxin ester derivatives as potential antitubulin agents. RSC Advances, 2015, 5, 47511-47521.	3.6	9
50	Targeted photosensitizer nanoconjugates based on human serum albumin selectively kill tumor cells upon photo-irradiation. RSC Advances, 2015, 5, 50572-50579.	3.6	9
51	Cloning, characterization, and expression of LeEIL-1, an Arabidopsis EIN3 homolog, in Lithospermum erythrorhizon. Plant Cell, Tissue and Organ Culture, 2011, 106, 71-79.	2.3	8
52	A Potent Anticancer Agent of Shikonin Derivative Targeting Tubulin. Chirality, 2015, 27, 274-280.	2.6	8
53	Assembly and shifts of the bacterial rhizobiome of field grown transgenic maize line carrying mcry1Ab and mcry2Ab genes at different developmental stages. Plant Growth Regulation, 2020, 91, 113-126.	3.4	8
54	Synthesis, biological evaluation and molecular docking studies of flavone and isoflavone derivatives as a novel class of KSP (kinesin spindle protein) inhibitors. European Journal of Medicinal Chemistry, 2013, 70, 427-433.	5.5	5

XIAO-MING WANG

#	Article	IF	CITATIONS
55	Shikonin derivatives as inhibitors of tyrosyl-tRNA synthetase: design, synthesis and biological evaluation. RSC Advances, 2016, 6, 83003-83010.	3.6	5
56	Design, synthesis and anti-cancer evaluation of novel podophyllotoxin derivatives as potent tubulin-targeting agents. Medicinal Chemistry Research, 2018, 27, 351-365.	2.4	5
57	Design, synthesis and biological evaluation of N-phenylsulfonylnicotinamide derivatives as novel antitumor inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 1411-1416.	3.0	4
58	One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment. RSC Advances, 2021, 11, 24232-24237.	3.6	4
59	Heterologous overexpression of Lithospermum erythrorhizon LeERF-1 gene increases drought and pathogen resistance in Arabidopsis. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	3
60	Discovering Podophyllotoxin Derivatives as Potential Antiâ€īubulin Agents: Design, Synthesis and Biological Evaluation. ChemistrySelect, 2020, 5, 10526-10536.	1.5	3
61	1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-3-thioureidothiourea monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o242-o242.	0.2	2
62	2,3,4-Tri-O-acetyl-β-D-xylosyl 2,4-dichlorophenoxyacetate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o669-o669.	0.2	2
63	1,3-Dioxo-2,3-dihydro-1H-isoindol-2-yl 2,3,4-tri-O-acetyl-β-D-xyloside. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o635-o635.	0.2	1
64	Synthesis, docking and biological evaluation of isoquinolonic acid derivatives. Chemical Research in Chinese Universities, 2013, 29, 1110-1114.	2.6	1
65	Assessment of shikonin and acetyl-shikonin for mitigating quorum sensing potential of C. violaceum. Plant Growth Regulation, 2021, 94, 233-243.	3.4	1
66	Glucosyl anthranilate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2725-o2725.	0.2	1
67	3-Methyl-2,6-dinitro-N-(3-pentyl)-4-[(2,3,4-tri-O-acetyl-β-D-xylosyl)aminomethyl]aniline. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1623-o1623.	0.2	1
68	Novel Catalytic Method for Synthesis of Glycosyl Esters by Combining PTC with DMAP. Chemical Research in Chinese Universities, 2007, 23, 426-429.	2.6	0