Sofie Struyf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9363611/publications.pdf Version: 2024-02-01

SOFIE STRUVE

#	Article	IF	CITATIONS
1	Efficacy of B Cell Depletion Therapy with Rituximab in Refractory Chronic Recurrent Uveitis Associated with Vogt-Koyanagi-Harada Disease. Ocular Immunology and Inflammation, 2022, 30, 750-757.	1.8	21
2	Inhibition of renal fibrosis with a human CXCL9â€derived glycosaminoglycanâ€binding peptide. Clinical and Translational Immunology, 2022, 11, e1370.	3.8	2
3	Method Matters: Effect of Purification Technology on Neutrophil Phenotype and Function. Frontiers in Immunology, 2022, 13, 820058.	4.8	21
4	Affinity and Specificity for Binding to Glycosaminoglycans Can Be Tuned by Adapting Peptide Length and Sequence. International Journal of Molecular Sciences, 2022, 23, 447.	4.1	7
5	Citrullination as a novel posttranslational modification of matrix metalloproteinases. Matrix Biology, 2021, 95, 68-83.	3.6	21
6	Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. Journal of Inflammation Research, 2021, Volume 14, 141-162.	3.5	58
7	The turning away of serum amyloid A biological activities and receptor usage. Immunology, 2021, 163, 115-127.	4.4	16
8	Phenotypical and Functional Characterization of Neutrophils in Two Pyrin-Associated Auto-inflammatory Diseases. Journal of Clinical Immunology, 2021, 41, 1072-1084.	3.8	6
9	From ELISA to Immunosorbent Tandem Mass Spectrometry Proteoform Analysis: The Example of CXCL8/Interleukin-8. Frontiers in Immunology, 2021, 12, 644725.	4.8	8
10	The Antimicrobial Activity of Peripheral Blood Neutrophils Is Altered in Patients with Primary Ciliary Dyskinesia. International Journal of Molecular Sciences, 2021, 22, 6172.	4.1	6
11	The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers, 2021, 13, 4247.	3.7	8
12	Kinetics of peripheral blood neutrophils in severe coronavirus disease 2019. Clinical and Translational Immunology, 2021, 10, e1271.	3.8	36
13	The Chemokine-Based Peptide, CXCL9(74-103), Inhibits Angiogenesis by Blocking Heparan Sulfate Proteoglycan-Mediated Signaling of Multiple Endothelial Growth Factors. Cancers, 2021, 13, 5090.	3.7	12
14	New Perspectives on the Immunopathogenesis and Treatment of Uveitis Associated With Vogt-Koyanagi-Harada Disease. Frontiers in Medicine, 2021, 8, 705796.	2.6	17
15	Tissue Inhibitor of Metalloproteinase-3 Ameliorates Diabetes-Induced Retinal Inflammation. Frontiers in Physiology, 2021, 12, 807747.	2.8	8
16	Local Cytokine Expression Profiling in Patients with Specific Autoimmune Uveitic Entities. Ocular Immunology and Inflammation, 2020, 28, 453-462.	1.8	24
17	Soluble cytokine receptor levels in aqueous humour of patients with specific autoimmune uveitic entities: sCD30 is a biomarker of granulomatous uveitis. Eye, 2020, 34, 1614-1623.	2.1	8
18	Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators of Inflammation, 2020, 2020, 1-17.	3.0	3

#	Article	IF	CITATIONS
19	CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Frontiers in Immunology, 2020, 11, 561404.	4.8	20
20	Serum Amyloid A1 (SAA1) Revisited: Restricted Leukocyte-Activating Properties of Homogeneous SAA1. Frontiers in Immunology, 2020, 11, 843.	4.8	31
21	Neutrophils: Underestimated Players in the Pathogenesis of Multiple Sclerosis (MS). International Journal of Molecular Sciences, 2020, 21, 4558.	4.1	58
22	Induction of Chemokines by Hepatitis C Virus Proteins: Synergy of the Core Protein with Interleukin-1β and Interferon-γ in Liver Bystander Cells. Journal of Interferon and Cytokine Research, 2020, 40, 195-206.	1.2	5
23	Evaluation of Proteoforms of the Transmembrane Chemokines CXCL16 and CX3CL1, Their Receptors, and Their Processing Metalloproteinases ADAM10 and ADAM17 in Proliferative Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 601639.	4.8	25
24	The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunology Letters, 2019, 205, 1-8.	2.5	11
25	Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine and Growth Factor Reviews, 2019, 50, 29-42.	7.2	20
26	Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction. Journal of Clinical Immunology, 2019, 39, 298-308.	3.8	31
27	Expression of interleukin (<scp>IL</scp>)â€10 family cytokines in aqueous humour of patients with specific endogenous uveitic entities: elevated levels of <scp>IL</scp> â€19 in human leucocyte antigenâ€827â€associated uveitis. Acta Ophthalmologica, 2019, 97, e780-e784.	1.1	16
28	The Proinflammatory and Proangiogenic Macrophage Migration Inhibitory Factor Is a Potential Regulator in Proliferative Diabetic Retinopathy. Frontiers in Immunology, 2019, 10, 2752.	4.8	50
29	The <scp>CC</scp> chemokines <scp>CCL</scp> 8, <scp>CCL</scp> 13 and <scp>CCL</scp> 20 are local inflammatory biomarkers of <scp>HLA</scp> â€B27â€associated uveitis. Acta Ophthalmologica, 2019, 97, e122-e128.	1.1	22
30	Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras. Cancer Immunology, Immunotherapy, 2018, 67, 589-603.	4.2	10
31	The unique structural and functional features of CXCL12. Cellular and Molecular Immunology, 2018, 15, 299-311.	10.5	243
32	Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cellular and Molecular Immunology, 2018, 15, 312-323.	10.5	27
33	Peroxynitrite Exposure of CXCL12 Impairs Monocyte, Lymphocyte and Endothelial Cell Chemotaxis, Lymphocyte Extravasation in vivo and Anti-HIV-1 Activity. Frontiers in Immunology, 2018, 9, 1933.	4.8	5
34	Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 2018, 9, 1930.	4.8	266
35	Pathological roles of the homeostatic chemokine CXCL12. Cytokine and Growth Factor Reviews, 2018, 44, 51-68.	7.2	110
36	Matrix Metalloproteinase-9-Generated COOH-, but Not NH2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Frontiers in Immunology, 2018, 9, 1081.	4.8	15

#	Article	IF	CITATIONS
37	Antiâ€inflammatory effects of the <scp>GAG</scp> â€binding <scp>CXCL</scp> 9(74â€103) peptide in dinitrofluorobenzeneâ€induced contact hypersensitivity in mice. Clinical and Experimental Allergy, 2018, 48, 1333-1344.	2.9	9
38	Differential CXC and CX3C Chemokine Expression Profiles in Aqueous Humor of Patients With Specific Endogenous Uveitic Entities. , 2018, 59, 2222.		40
39	CXCL4 and CXCL4L1 in cancer. Cytokine, 2018, 109, 65-71.	3.2	25
40	How post-translational modifications influence the biological activity of chemokines. Cytokine, 2018, 109, 29-51.	3.2	44
41	COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood, 2018, 131, 439-449.	1.4	17
42	Recombinant Parvoviruses Armed to Deliver CXCL4L1 and CXCL10 Are Impaired in Their Antiangiogenic and Antitumoral Effects in a Kaposi Sarcoma Tumor Model Due To the Chemokines' Interference with the Virus Cycle. Human Gene Therapy, 2017, 28, 295-306.	2.7	8
43	Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochemical Pharmacology, 2017, 132, 92-101.	4.4	42
44	Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochemical Pharmacology, 2017, 145, 123-131.	4.4	4
45	Tumor angiogenesis revisited: Regulators and clinical implications. Medicinal Research Reviews, 2017, 37, 1231-1274.	10.5	138
46	Chemokine isoforms and processing in inflammation and immunity. Journal of Autoimmunity, 2017, 85, 45-57.	6.5	67
47	CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions. Frontiers in Immunology, 2017, 8, 530.	4.8	33
48	Neutrophils from Patients with Primary Ciliary Dyskinesia Display Reduced Chemotaxis to CXCR2 Ligands. Frontiers in Immunology, 2017, 8, 1126.	4.8	12
49	Osteoprotegerin Is a New Regulator of Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy. , 2017, 58, 3189.		30
50	Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Frontiers in Immunology, 2017, 8, 1970.	4.8	227
51	Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Current Medicinal Chemistry, 2016, 23, 1725-1755.	2.4	180
52	The Cytokine Interleukin-6 and the Chemokines CCL20 and CXCL13 Are Novel Biomarkers of Specific Endogenous Uveitic Entities. , 2016, 57, 4606.		36
53	Transforming Growth Factor Beta Switch in Aqueous Humor of Patients With Fuchs' Endothelial Corneal Dystrophy. , 2016, 57, 771.		12
54	The cytokine-serum amyloid A-chemokine network. Cytokine and Growth Factor Reviews, 2016, 30, 55-69.	7.2	99

#	Article	IF	CITATIONS
55	CD26/dipeptidylpeptidase IV—chemokine interactions: double-edged regulation of inflammation and tumor biology. Journal of Leukocyte Biology, 2016, 99, 955-969.	3.3	75
56	CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE, 2016, 11, e0166006.	2.5	39
57	Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity <i>in vitro</i> and abrogates intra-articular lymphocyte recruitment <i>in vivo</i> . Oncotarget, 2016, 7, 62439-62459.	1.8	32
58	Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT). Experimental Eye Research, 2015, 132, 179-189.	2.6	76
59	The Chemokine Platelet Factor-4 Variant (PF-4var)/CXCL4L1 Inhibits Diabetes-Induced Blood–Retinal Barrier Breakdown. , 2015, 56, 1956.		14
60	Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. Journal of Leukocyte Biology, 2015, 98, 1049-1060.	3.3	40
61	Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines. European Journal of Immunology, 2015, 45, 101-112.	2.9	57
62	CXCR3 ligands in disease and therapy. Cytokine and Growth Factor Reviews, 2015, 26, 311-327.	7.2	239
63	CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis, 2014, 17, 631-640.	7.2	19
64	Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology, 2014, 219, 218-229.	1.9	63
65	Angiostatic, tumor inflammatory and anti-tumor effects of CXCL447-70 and CXCL4L147–70 in an EGF-dependent breast cancer model. Oncotarget, 2014, 5, 10916-10933.	1.8	23
66	Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends in Parasitology, 2013, 29, 346-358.	3.3	79
67	Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis. Virology, 2013, 447, 221-232.	2.4	11
68	Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Experimental Eye Research, 2013, 109, 67-76.	2.6	74
69	Identification and characterization of MIP-1α/CCL3 isoform 2 from bovine serum as a potent monocyte/dendritic cell chemoattractant. Biochemical Pharmacology, 2013, 85, 789-797.	4.4	14
70	CXCL6 antibody neutralization prevents lung inflammation and fibrosis in mice in the bleomycin model. Journal of Leukocyte Biology, 2013, 94, 1317-1323.	3.3	51
71	Neurotrophins and Neurotrophin Receptors in Proliferative Diabetic Retinopathy. PLoS ONE, 2013, 8, e65472.	2.5	36
72	Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: implication of leucocyte recruitment. Cancer Immunology, Immunotherapy, 2012, 61, 2113-2123.	4.2	46

#	Article	IF	CITATIONS
73	Possible mechanisms involved in chemokine synergy fine tuning the inflammatory response. Immunology Letters, 2012, 145, 10-14.	2.5	52
74	Cytokine and CXC chemokine expression patterns in aqueous humor of patients with presumed tuberculous uveitis. Cytokine, 2012, 59, 377-381.	3.2	31
75	The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 117-129.	7.4	95
76	PF-4var/CXCL4L1 Predicts Outcome in Stable Coronary Artery Disease Patients with Preserved Left Ventricular Function. PLoS ONE, 2012, 7, e31343.	2.5	19
77	PS2-046. New developments in mouse cytokine auto-vaccination with particular emphasis on anti-GCP-2/CXCL6. Cytokine, 2011, 56, 75.	3.2	0
78	The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine and Growth Factor Reviews, 2011, 22, 1-18.	7.2	136
79	The expression and role of CXC chemokines in colorectal cancer. Cytokine and Growth Factor Reviews, 2011, 22, 345-358.	7.2	114
80	lsotypic neutralizing antibodies against mouse GCP-2/CXCL6 inhibit melanoma growth and metastasis. Cancer Letters, 2011, 302, 54-62.	7.2	52
81	Circulating boneâ€marrowâ€derived endothelial precursor cells contribute to neovascularization in diabetic epiretinal membranes. Acta Ophthalmologica, 2011, 89, 222-228.	1.1	40
82	CXC chemokine expression profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Immunobiology, 2011, 216, 1004-1009.	1.9	46
83	Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood, 2011, 117, 480-488.	1.4	95
84	Cytokine profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Clinical Immunology, 2011, 139, 177-184.	3.2	125
85	Longitudinal changes in gingival crevicular fluid after placement of fixed orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2011, 139, 735-744.	1.7	38
86	CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dualâ€tropic (R5/X4) HIVâ€1 infection. European Journal of Immunology, 2011, 41, 963-973.	2.9	64
87	Amine-reactive OVA multimers for auto-vaccination against cytokines and other mediators: perspectives illustrated for GCP-2 in <i>L. major</i> infection. Journal of Leukocyte Biology, 2011, 89, 1001-1007.	3.3	29
88	Langerhans cell histiocytosis: a cytokine/chemokine-mediated disorder?. European Cytokine Network, 2011, 22, 148-153.	2.0	21
89	The COOH-Terminal Peptide of Platelet Factor-4 Variant (CXCL4L1/PF-4var47-70) Strongly Inhibits Angiogenesis and Suppresses B16 Melanoma Growth <i>In vivo</i> . Molecular Cancer Research, 2010, 8, 322-334.	3.4	41
90	Expression of angiostatic platelet factor-4var/CXCL4L1 counterbalances angiogenic impulses of vascular endothelial growth factor, interleukin-8/CXCL8, and stromal cell-derived factor 1/CXCL12 in esophageal and colorectal cancer. Human Pathology, 2010, 41, 990-1001.	2.0	22

#	Article	IF	CITATIONS
91	Expression of stem cell factor/c-kit signaling pathway components in diabetic fibrovascular epiretinal membranes. Molecular Vision, 2010, 16, 1098-107.	1.1	34
92	Citrullination of CXCL12 Differentially Reduces CXCR4 and CXCR7 Binding with Loss of Inflammatory and Anti-HIV-1 Activity via CXCR4. Journal of Immunology, 2009, 182, 666-674.	0.8	86
93	Recognition Versus Adaptive Up-regulation and Degradation of CC Chemokines by the Chemokine Decoy Receptor D6 Are Determined by Their N-terminal Sequence. Journal of Biological Chemistry, 2009, 284, 26207-26215.	3.4	49
94	CC chemokine ligand-2 synergizes with the nonchemokine G protein-coupled receptor ligand fMLP in monocyte chemotaxis, and it cooperates with the TLR ligand LPS via induction of CXCL8. Journal of Leukocyte Biology, 2009, 86, 671-680.	3.3	21
95	Contribution of intracellular Ca2+ stores to Ca2+ signaling during chemokinesis of human neutrophil granulocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1041-1049.	4.1	15
96	Synergistic upâ€regulation of MCPâ€2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and antiâ€tumoral effects. European Journal of Immunology, 2009, 39, 843-857.	2.9	57
97	Carcinoma cellâ€derived chemokines and their presence in oral fluid. European Journal of Oral Sciences, 2009, 117, 362-368.	1.5	30
98	Interleukin-17 regulates chemokine and gelatinase B expression in fibroblasts to recruit both neutrophils and monocytes. Immunobiology, 2009, 214, 835-842.	1.9	44
99	CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFNâ€Î³â€induced chemokines. European Journal of Immunology, 2008, 38, 1082-1095.	2.9	97
100	The role of CXC chemokines and their receptors in cancer. Cancer Letters, 2008, 267, 226-244.	7.2	565
101	Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. Journal of Experimental Medicine, 2008, 205, 2085-2097.	8.5	159
102	Synergy between Coproduced CC and CXC Chemokines in Monocyte Chemotaxis through Receptor-Mediated Events. Molecular Pharmacology, 2008, 74, 485-495.	2.3	108
103	Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. Journal of Cell Biology, 2008, 182, i9-i9.	5.2	0
104	Platelet Factor-4 Variant Chemokine CXCL4L1 Inhibits Melanoma and Lung Carcinoma Growth and Metastasis by Preventing Angiogenesis. Cancer Research, 2007, 67, 5940-5948.	0.9	106
105	Stimulation of angiostatic platelet factor-4 variant (CXCL4L1/PF-4var) versus inhibition of angiogenic granulocyte chemotactic protein-2 (CXCL6/GCP-2) in normal and tumoral mesenchymal cells. Journal of Leukocyte Biology, 2007, 82, 1519-1530.	3.3	32
106	Protective role of IFN-Î ³ in collagen-induced arthritis conferred by inhibition of mycobacteria-induced granulocyte chemotactic protein-2 production. Journal of Leukocyte Biology, 2007, 81, 1044-1053.	3.3	41
107	Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood, 2007, 110, 37-44.	1.4	115
108	MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. International Journal of Cancer, 2007, 120, 1364-1371.	5.1	43

#	Article	IF	CITATIONS
109	The role of chemokines and their receptors in uveitis. International Ophthalmology, 2007, 27, 321-327.	1.4	5
110	Coexpression and interaction of CXCL10 and CD26 in mesenchymal cells by synergising inflammatory cytokines: CXCL8 and CXCL10 are discriminative markers for autoimmune arthropathies. Arthritis Research and Therapy, 2006, 8, R107.	3.5	57
111	The activated form of gelatinase B/matrix metalloproteinase-9 is associated with diabetic vitreous hemorrhage. Experimental Eye Research, 2006, 83, 401-407.	2.6	46
112	TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. Laboratory Investigation, 2006, 86, 902-916.	3.7	92
113	Structure/Function Relationships of CCR8 Agonists and Antagonists. Journal of Biological Chemistry, 2006, 281, 36652-36661.	3.4	30
114	Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. European Cytokine Network, 2006, 17, 155-65.	2.0	113
115	Chemokines synergize in the recruitment of circulating neutrophils into inflamed tissue. European Journal of Immunology, 2005, 35, 1583-1591.	2.9	84
116	GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Experimental Cell Research, 2005, 303, 331-342.	2.6	141
117	Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine and Growth Factor Reviews, 2005, 16, 561-580.	7.2	184
118	Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. Journal of Leukocyte Biology, 2004, 76, 185-194.	3.3	102
119	Platelets Release CXCL4L1, a Nonallelic Variant of the Chemokine Platelet Factor-4/CXCL4 and Potent Inhibitor of Angiogenesis. Circulation Research, 2004, 95, 855-857.	4.5	151
120	Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-γ in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. Journal of Leukocyte Biology, 2004, 75, 777-784.	3.3	81
121	Chemokine–protease interactions in cancer. Seminars in Cancer Biology, 2004, 14, 201-208.	9.6	65
122	Rabbit neutrophil chemotactic protein (NCP) activates both CXCR1 and CXCR2 and is the functional homologue for human CXCL6. Biochemical Pharmacology, 2004, 68, 1947-1955.	4.4	5
123	CXCR1-binding chemokines in inflammatory bowel diseases: down-regulated IL-8/CXCL8 production by leukocytes in Crohn's disease and selective GCP-2/CXCL6 expression in inflamed intestinal tissue. European Journal of Immunology, 2004, 34, 1992-2000.	2.9	67
124	Chemokines and gelatinases in the aqueous humor of patients with active uveitis. American Journal of Ophthalmology, 2004, 138, 401-411.	3.3	50
125	CCR8-dependent activation of the RAS/MAPK pathway mediates anti-apoptotic activity of I-309/CCL1 and vMIP-I. European Journal of Immunology, 2003, 33, 494-501.	2.9	56
126	Microbial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-Î ³ and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. European Journal of Immunology, 2003, 33, 3146-3153.	2.9	96

#	Article	IF	CITATIONS
127	The CXC Chemokine GCP-2/CXCL6 Is Predominantly Induced in Mesenchymal Cells by Interleukin-1β and Is Down-Regulated by Interferon-γ: Comparison with Interleukin-8/CXCL8. Laboratory Investigation, 2003, 83, 23-34.	3.7	83
128	The T-lymphocyte chemoattractant Mig is highly expressed in vernal keratoconjunctivitis. American Journal of Ophthalmology, 2003, 136, 853-860.	3.3	21
129	PARC/CCL18 Is a Plasma CC Chemokine with Increased Levels in Childhood Acute Lymphoblastic Leukemia. American Journal of Pathology, 2003, 163, 2065-2075.	3.8	72
130	The CC chemokine CCL20 and its receptor CCR6. Cytokine and Growth Factor Reviews, 2003, 14, 409-426.	7.2	660
131	Regulation of the Immune Response by the Interaction of Chemokines and Proteases. Advances in Immunology, 2003, 81, 1-44.	2.2	102
132	Unique Regulation of CCL18 Production by Maturing Dendritic Cells. Journal of Immunology, 2003, 170, 3843-3849.	0.8	144
133	Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 2003, 278, 25481-25489.	3.4	1,286
134	Role of Chemokines in Vernal Keratoconjunctivitis. International Ophthalmology Clinics, 2003, 43, 33-39.	0.7	14
135	Natural Substrates of Dipeptidyl Peptidase IV. Advances in Experimental Medicine and Biology, 2002, 477, 67-87.	1.6	71
136	The Unique Property of the CC Chemokine Regakine-1 to Synergize with Other Plasma-Derived Inflammatory Mediators in Neutrophil Chemotaxis Does Not Reside in Its NH2-Terminal Structure. Molecular Pharmacology, 2002, 62, 173-180.	2.3	25
137	Identification of Biologically Active Chemokine Isoforms from Ascitic Fluid and Elevated Levels of CCL18/Pulmonary and Activation-regulated Chemokine in Ovarian Carcinoma. Journal of Biological Chemistry, 2002, 277, 24584-24593.	3.4	193
138	Role of the autocrine chemokines MIP-1alpha and MIP-1beta in the metastatic behavior of murine T cell lymphoma. Journal of Leukocyte Biology, 2002, 72, 780-9.	3.3	22
139	Gene Cloning of a New Plasma CC Chemokine, Activating and Attracting Myeloid Cells in Synergy with Other Chemoattractantsâ€,‡. Biochemistry, 2001, 40, 11715-11722.	2.5	15
140	Identification of a blood-derived chemoattractant for neutrophils and lymphocytes as a novel CC chemokine, Regakine-1. Blood, 2001, 97, 2197-2204.	1.4	41
141	Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 2001, 98, 3554-3561.	1.4	227
142	Dendritic cells as a major source of macrophage-derived chemokine/CCL22in vitro andin vivo. European Journal of Immunology, 2001, 31, 812-822.	2.9	246
143	Diverging binding capacities of natural LD78β isoforms of macrophage inflammatory protein-1α to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. European Journal of Immunology, 2001, 31, 2170-2178.	2.9	91
144	Selective induction of CCL18/PARC by staphylococcal enterotoxins in mononuclear cells and enhanced levels in septic and rheumatoid arthritis. European Journal of Immunology, 2001, 31, 3755-3762.	2.9	51

#	Article	IF	CITATIONS
145	The LD78Î ² Isoform of MIP-1α Is the Most Potent CC-Chemokine in Inhibiting CCR5-Dependent Human Immunodeficiency Virus Type 1 Replication in Human Macrophages. Journal of Virology, 2001, 75, 4402-4406.	3.4	50
146	Selective induction of CCL18/PARC by staphylococcal enterotoxins in mononuclear cells and enhanced levels in septic and rheumatoid arthritis. , 2001, 31, 3755.		1
147	Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood, 2000, 96, 1674-1680.	1.4	151
148	Regulated Production and Molecular Diversity of Human Liver and Activation-Regulated Chemokine/Macrophage Inflammatory Protein-3α from Normal and Transformed Cells. Journal of Immunology, 2000, 165, 4470-4477.	0.8	76
149	Biochemical and Biological Characterization of Neutrophil Chemotactic Protein, a Novel Rabbit CXC Chemokine from Alveolar Macrophages. Biochemistry, 2000, 39, 14549-14557.	2.5	10
150	Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood, 2000, 96, 1674-1680.	1.4	4
151	Activity of Different Bicyclam Derivatives against Human Immunodeficiency Virus Depends on Their Interaction with the CXCR4 Chemokine Receptor. Molecular Pharmacology, 1999, 55, 67-73.	2.3	107
152	cis Requirements for the Efficient Production of Recombinant DNA Vectors Based on Autonomous Parvoviruses. Human Gene Therapy, 1999, 10, 1619-1632.	2.7	84
153	Truncation of Macrophage-derived Chemokine by CD26/ Dipeptidyl-Peptidase IV beyond Its Predicted Cleavage Site Affects Chemotactic Activity and CC Chemokine Receptor 4 Interaction. Journal of Biological Chemistry, 1999, 274, 3988-3993.	3.4	142
154	Isolation of the CXC chemokines ENA-78, GROα and GROγ from tumor cells and leukocytes reveals NH2-terminal heterogeneity. FEBS Journal, 1999, 260, 421-429.	0.2	75
155	Differential induction of monocyte chemotactic protein-3 in mononuclear leukocytes and fibroblasts by interferon-α / β and interferon-γ reveals MCP-3 heterogeneity. European Journal of Immunology, 199 678-685.	992 29 9,	63
156	Synthesis and Structureâ~Activity Relationships of Phenylenebis(methylene)- Linked Bis-azamacrocycles That Inhibit HIV-1 and HIV-2 Replication by Antagonism of the Chemokine Receptor CXCR4. Journal of Medicinal Chemistry, 1999, 42, 3971-3981.	6.4	107
157	The LD78β isoform of MIP-1α is the most potent CCR5 agonist and HIV-1–inhibiting chemokine. Journal of Clinical Investigation, 1999, 104, R1-R5.	8.2	93
158	CD26-processed RANTES(3–68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Research, 1998, 39, 175-187.	4.1	75
159	Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. European Journal of Immunology, 1998, 28, 1262-1271.	2.9	130
160	Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-11±. FEBS Letters, 1998, 432, 73-76.	2.8	187
161	Functional Comparison of Two Human Monocyte Chemotactic Protein-2 Isoforms, Role of the Amino-Terminal Pyroglutamic Acid and Processing by CD26/Dipeptidyl Peptidase IVâ€. Biochemistry, 1998, 37, 12672-12680.	2.5	141
162	Amino-terminal Truncation of Chemokines by CD26/Dipeptidyl-peptidase IV. Journal of Biological Chemistry, 1998, 273, 7222-7227.	3.4	238

#	Article	IF	CITATIONS
163	Inhibition of T-tropic HIV Strains by Selective Antagonization of the Chemokine Receptor CXCR4. Journal of Experimental Medicine, 1997, 186, 1383-1388.	8.5	559
164	Granulocyte chemotactic protein-2 and related CXC chemokines: from gene regulation to receptor usage. Journal of Leukocyte Biology, 1997, 62, 563-569.	3.3	98
165	Isolation of human monocyte chemotactic proteins and study of their producer and responder cells by immunotests and bioassays. Methods in Enzymology, 1997, 287, 109-127.	1.0	3