Toshiaki Fukui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9363408/publications.pdf

Version: 2024-02-01

108 papers 6,120 citations

45 h-index 76900 74 g-index

110 all docs

110 docs citations

110 times ranked

4097 citing authors

#	Article	IF	CITATIONS
1	Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Research, 2005, 15, 352-363.	5.5	376
2	Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Applied Microbiology and Biotechnology, 1996, 45, 363-370.	3.6	277
3	Description of <i>Thermococcus kodakaraensis </i> sp. nov., a well studied hyperthermophilic archaeon previously reported as <i>Pyrococcus </i> sp. KOD1. Archaea, 2004, 1, 263-267.	2.3	261
4	Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. Journal of Bacteriology, 1997, 179, 4821-4830.	2,2	260
5	Targeted Gene Disruption by Homologous Recombination in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2003, 185, 210-220.	2.2	254
6	Cloning and Molecular Analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyalkanoate) Biosynthesis Genes in <i>Pseudomonas</i> sp. Strain 61-3. Journal of Bacteriology, 1998, 180, 6459-6467.	2.2	205
7	Improved and Versatile Transformation System Allowing Multiple Genetic Manipulations of the Hyperthermophilic Archaeon Thermococcus kodakaraensis. Applied and Environmental Microbiology, 2005, 71, 3889-3899.	3.1	198
8	Expression and Characterization of (<i>R</i>)-Specific Enoyl Coenzyme A Hydratase Involved in Polyhydroxyalkanoate Biosynthesis by <i>Aeromonas caviae</i> . Journal of Bacteriology, 1998, 180, 667-673.	2.2	196
9	A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon <i>Pyrococcus kodakaraensis</i> KOD1. Applied and Environmental Microbiology, 1999, 65, 5338-5344.	3.1	154
10	Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology, 2005, 116, 271-282.	3.8	148
11	Molecular cloning of two (R)-specific enoyl-CoA hydratase genes fromPseudomonas aeruginosaand their use for polyhydroxyalkanoate synthesis. FEMS Microbiology Letters, 2000, 184, 193-198.	1.8	116
12	Disruption of a Sugar Transporter Gene Cluster in a Hyperthermophilic Archaeon Using a Host-Marker System Based on Antibiotic Resistance. Journal of Bacteriology, 2007, 189, 2683-2691.	2.2	101
13	Characterization of an Exo- \hat{l}^2 - d-Glucosaminidase Involved in a Novel Chitinolytic Pathway from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2003, 185, 5175-5181.	2.2	97
14	Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Frontiers in Microbiology, 2014, 5, 100.	3.5	92
15	Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production inEscherichia coliHB101 strain. FEMS Microbiology Letters, 1999, 176, 183-190.	1.8	89
16	Different Cleavage Specificities of the Dual Catalytic Domains in Chitinase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Biological Chemistry, 2001, 276, 35629-35635.	3.4	89
17	Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles. Journal of Bacteriology, 2004, 186, 5799-5807.	2.2	88
18	Crystal Structure of a Novel-Type Archaeal Rubisco with Pentagonal Symmetry. Structure, 2001, 9, 473-481.	3.3	82

#	Article	IF	CITATIONS
19	Complete Biosynthetic Pathway of the C ₅₀ Carotenoid Bacterioruberin from Lycopene in the Extremely Halophilic Archaeon Haloarcula japonica. Journal of Bacteriology, 2015, 197, 1614-1623.	2.2	81
20	Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis. International Journal of Biological Macromolecules, 1999, 25, 69-77.	7.5	79
21	Concerted Action of Diacetylchitobiose Deacetylase and Exo-β-D-glucosaminidase in a Novel Chitinolytic Pathway in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Biological Chemistry, 2004, 279, 30021-30027.	3.4	78
22	Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes ofAeromonas caviaeestablishes copolyester biosynthesis pathway inEscherichia coli. FEMS Microbiology Letters, 1999, 170, 69-75.	1.8	77
23	Engineering ofRalstonia eutrophafor Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Fructose and Solid-State Properties of the Copolymer. Biomacromolecules, 2002, 3, 618-624.	5.4	77
24	Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Molecular Microbiology, 2006, 61, 898-909.	2.5	75
25	Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench. Microbes and Environments, 2018, 33, 186-194.	1.6	75
26	Crystal Structure of the (R)-Specific Enoyl-CoA Hydratase from Aeromonas caviae Involved in Polyhydroxyalkanoate Biosynthesis. Journal of Biological Chemistry, 2003, 278, 617-624.	3.4	73
27	A Novel Candidate for the True Fructose-1,6-bisphosphatase in Archaea. Journal of Biological Chemistry, 2002, 277, 30649-30655.	3.4	71
28	Conversion of rice husks to polyhydroxyalkanoates (<scp>PHA</scp>) via a threeâ€step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by <i>Burkholderia cepacia</i> <scp>USM</scp> (<scp>JCM</scp> 15050). Journal of Chemical Technology and Biotechnology, 2017, 92, 100-108.	3.2	69
29	Engineering of pha operon on Cupriavidus necator chromosome for efficient biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Polymer Degradation and Stability, 2010, 95, 1305-1312.	5.8	66
30	Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Applied Microbiology and Biotechnology, 2014, 98, 3715-3725.	3.6	66
31	Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiology, 2013, 13, 169.	3.3	63
32	Characterization of 13 kDa Granule-Associated Protein inAeromonascaviaeand Biosynthesis of Polyhydroxyalkanoates with Altered Molar Composition by Recombinant Bacteria. Biomacromolecules, 2001, 2, 148-153.	5.4	61
33	Microbial Synthesis of Poly((<i>R</i>)-3-hydroxybutyrate- <i>co</i> -3-hydroxypropionate) from Unrelated Carbon Sources by Engineered Cupriavidus necator. Biomacromolecules, 2009, 10, 700-706.	5.4	60
34	A Membrane-Bound Archaeal Lon Protease Displays ATP-Independent Proteolytic Activity towards Unfolded Proteins and ATP-Dependent Activity for Folded Proteins. Journal of Bacteriology, 2002, 184, 3689-3698.	2.2	58
35	Targeted engineering of <i>Cupriavidus necator</i> chromosome for biosynthesis of poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) from vegetable oil. Canadian Journal of Chemistry, 2008, 86, 621-627.	1.1	58
36	Characterization of an Archaeal Cyclodextrin Glucanotransferase with a Novel C-Terminal Domain. Journal of Bacteriology, 2002, 184, 777-784.	2.2	57

#	Article	IF	CITATIONS
37	Production of Biodegradable Polyester by a Transgenic Tobacco. Bioscience, Biotechnology and Biochemistry, 1999, 63, 870-874.	1.3	55
38	ATP-citrate lyase from the green sulfur bacteriumChlorobium limicolais a heteromeric enzyme composed of two distinct gene products. FEBS Journal, 2001, 268, 1670-1678.	0.2	53
39	Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. Journal of Molecular Biology, 1999, 293, 57-66.	4.2	52
40	Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Applied Microbiology and Biotechnology, 2011, 89, 1527-1536.	3.6	52
41	Modification of \hat{l}^2 -oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. Journal of Bioscience and Bioengineering, 2014, 117, 184-190.	2.2	52
42	Metal-binding properties of phytochelatin-related peptides. Journal of Inorganic Biochemistry, 2001, 86, 595-602.	3.5	51
43	Presence of a Novel Phosphopentomutase and a 2-Deoxyribose 5-Phosphate Aldolase Reveals a Metabolic Link between Pentoses and Central Carbon Metabolism in the Hyperthermophilic Archaeon Thermococcus kodakaraensis. Journal of Bacteriology, 2004, 186, 4185-4191.	2.2	50
44	Characterization and Functional Analyses of <i>R</i> -Specific Enoyl Coenzyme A Hydratases in Polyhydroxyalkanoate-Producing Ralstonia eutropha. Applied and Environmental Microbiology, 2012, 78, 493-502.	3.1	50
45	Stereoselective esterification of halogen-containing carboxylic acids by lipase in organic solvent: effects of alcohol chain length. Applied Microbiology and Biotechnology, 1990, 34, 47.	3.6	48
46	Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. FEBS Journal, 2002, 269, 1926-1931.	0.2	46
47	First Characterization of an Archaeal GTP-Dependent Phosphoenolpyruvate Carboxykinase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2004, 186, 4620-4627.	2.2	46
48	Title is missing!. Biotechnology Letters, 1997, 19, 1093-1097.	2.2	45
49	New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation. Scientific Reports, 2015, 5, 11617.	3.3	45
50	Overview of the genetic tools in the Archaea. Frontiers in Microbiology, 2012, 3, 337.	3.5	39
51	Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Research, 2019, 47, 1964-1976.	14.5	38
52	Genetic Analysis of <i>Comamonas acidovorans</i> Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer. Applied and Environmental Microbiology, 1998, 64, 3437-3443.	3.1	38
53	Improved production of poly(4-hydroxybutyrate) by Comamonas acidovorans and its freeze-fracture morphology. International Journal of Biological Macromolecules, 1999, 25, 79-85.	7.5	37
54	Improvement of Alkaliphily of <i>Bacillus </i> Alkaline Xylanase by Introducing Amino Acid Substitutions Both on Catalytic Cleft and Protein Surface. Bioscience, Biotechnology and Biochemistry, 2009, 73, 965-967.	1.3	36

#	Article	IF	CITATIONS
55	Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. Journal of Bioscience and Bioengineering, 2012, 113, 63-69.	2.2	36
56	Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 2014, 98, 7559-7568.	3.6	36
57	Enzymatic preparation of optically active silylmethanol derivatives having a stereogenic silicon atom by hydrolase-catalyzed enantioselective esterification. Tetrahedron: Asymmetry, 1994, 5, 73-82.	1.8	35
58	Biosynthesis of Polyester Blends byPseudomonassp. 61-3 from Alkanoic Acids. Bulletin of the Chemical Society of Japan, 1996, 69, 515-520.	3.2	35
59	Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 2022, 605, 372-379.	27.8	35
60	A Novel ADP-forming Succinyl-CoA Synthetase in Thermococcus kodakaraensis Structurally Related to the Archaeal Nucleoside Diphosphate-forming Acetyl-CoA Synthetases. Journal of Biological Chemistry, 2007, 282, 26963-26970.	3.4	34
61	Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD ⁺ and NADP ⁺ . Biotechnology and Bioengineering, 2012, 109, 53-62.	3.3	34
62	Molecular identification of a novel \hat{l}^2 -1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles, 2006, 10, 251-255.	2.3	32
63	Title is missing!. Biotechnology Letters, 1999, 21, 579-584.	2.2	31
64	Chitinase from Thermococcus kodakaraensis KOD1. Methods in Enzymology, 2001, 330, 319-329.	1.0	29
65	Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon <i>Thermococcus kodakaraensis</i> KOD1. Archaea, 2005, 1, 293-301.	2.3	29
66	Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metabolic Engineering, 2015, 27, 38-45.	7.0	29
67	Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Journal of Bioscience and Bioengineering, 2002, 94, 237-243.	2.2	28
68	Metabolite profiles of polyhydroxyalkanoate-producing Ralstonia eutropha H16. Metabolomics, 2014, 10, 190-202.	3.0	27
69	Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase. FEBS Journal, 2002, 269, 3409-3416.	0.2	26
70	Gene Analysis, Expression, and Characterization of an Intracellular α-Amylase from the Extremely Halophilic Archaeon <i>Haloarcula japonica</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 281-288.	1.3	26
71	Characterization of a Novel Glucosamine-6-Phosphate Deaminase from a Hyperthermophilic Archaeon. Journal of Bacteriology, 2005, 187, 7038-7044.	2.2	25
72	Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols. Applied and Environmental Microbiology, 2013, 79, 2209-2217.	3.1	24

#	Article	IF	CITATIONS
73	Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Microbial Cell Factories, 2019, 18, 147.	4.0	24
74	Efficient kinetic resolution of organosilicon compounds by stereoselective esterification with hydrolases in organic solvent. Applied Microbiology and Biotechnology, 1993, 38, 482.	3.6	23
75	Characterization of NADH Oxidase/NADPH Polysulfide Oxidoreductase and Its Unexpected Participation in Oxygen Sensitivity in an Anaerobic Hyperthermophilic Archaeon. Journal of Bacteriology, 2010, 192, 5192-5202.	2.2	22
76	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from CO2 by a Recombinant Cupriavidusnecator. Bioengineering, 2021, 8, 179.	3.5	22
77	Kinetic resolution of organosilicon compounds by stereoselective dehydrogenation with horse liver alcohol dehydrogenase. Applied Microbiology and Biotechnology, 1992, 38, 209-13.	3 . 6	21
78	Factors affecting the freeze-fracture morphology of in vivo polyhydroxyalkanoate granules. Canadian Journal of Microbiology, 2000, 46, 304-311.	1.7	21
79	Fractionation and thermal characteristics of biosynthesized polyhydoxyalkanoates bearing aromatic groups as side chains. Polymer Journal, 2017, 49, 557-565.	2.7	21
80	Compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by replacement of granule-associated protein in Ralstonia eutropha. Microbial Cell Factories, 2015, 14, 187.	4.0	20
81	Morphological and 13C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in Pseudomonassp. 61-3. FEMS Microbiology Letters, 1998, 164, 219-225.	1.8	18
82	Gene Cloning and Characterization of Fructose-1,6-Bisphosphate Aldolase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bioscience and Bioengineering, 2002, 94, 237-243.	2.2	17
83	Enzymatic preparation of d - p  -trimethylsilylphenylalanine. Applied Microbiology and Biotechnology, 1997, 47, 114-119.	3.6	16
84	Methionine Sulfoxide Reductase from the Hyperthermophilic Archaeon <i>Thermococcus kodakaraensis</i> , an Enzyme Designed To Function at Suboptimal Growth Temperatures. Journal of Bacteriology, 2007, 189, 7134-7144.	2.2	16
85	Mutational Analysis of a CBM Family 5 Chitin-Binding Domain of an Alkaline Chitinase from <i>Bacillus</i> Sp. J813. Bioscience, Biotechnology and Biochemistry, 2012, 76, 530-535.	1.3	16
86	Characterization of Two Members among the Five ADP-Forming Acyl Coenzyme A (Acyl-CoA) Synthetases Reveals the Presence of a 2-(Imidazol-4-yl)Acetyl-CoA Synthetase in Thermococcus kodakarensis. Journal of Bacteriology, 2014, 196, 140-147.	2.2	15
87	Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 2019, 127, 294-300.	2.2	14
88	Enhancement of bioplastic polyhydroxybutyrate P(3HB) production from glucose by newly engineered strain Cupriavidus necator NSDG-GG using response surface methodology. 3 Biotech, 2018, 8, 330.	2,2	13
89	Genetic Examination and Mass Balance Analysis of Pyruvate/Amino Acid Oxidation Pathways in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Journal of Bacteriology, 2014, 196, 3831-3839.	2.2	12
90	A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation. Journal of Biotechnology, 2020, 307, 77-86.	3.8	12

#	Article	IF	Citations
91	A Calcium-Dependent Xylan-Binding Domain of Alkaline Xylanase from Alkaliphilic <i>Bacillus</i> Strain 41M-1. Bioscience, Biotechnology and Biochemistry, 2011, 75, 379-381.	1.3	11
92	Biosynthesis of Polyhydroxyalkanoate Terpolymer from Methanol via the Reverse \hat{l}^2 -Oxidation Pathway in the Presence of Lanthanide. Microorganisms, 2022, 10, 184.	3.6	10
93	Isopropanol production with reutilization of glucose-derived CO2 by engineered Ralstonia eutropha. Journal of Bioscience and Bioengineering, 2021, 132, 479-486.	2.2	9
94	Crystallization and preliminary X-ray analysis of (R)-specific enoyl-CoA hydratase fromAeromonas caviaeinvolved in polyhydroxyalkanoate biosynthesis. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 145-147.	2.5	7
95	Additional Carbohydrate-Binding Modules Enhance the Insoluble Substrate-Hydrolytic Activity of β-1,3-Glucanase from Alkaliphilic <i>Nocardiopsis</i> Biochemistry, 2009, 73, 1078-1082.	1.3	6
96	Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. A carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle. FEBS Journal, 2002, 269, 1926-1931.	0.2	6
97	Enantioselective Bioconversion of Non-Natural Compounds. Biocatalysis, 1994, 9, 343-352.	0.9	5
98	Characterization and gene deletion analysis of four homologues of group 3 pyridine nucleotide disulfide oxidoreductases from Thermococcus kodakarensis. Extremophiles, 2014, 18, 603-616.	2.3	5
99	Functional Improvement of Xylanase by Introducing Mutated Xylan-binding Domain. Journal of Applied Glycoscience (1999), 2006, 53, 131-136.	0.7	4
100	Analysis of Functional Domains and Improvement of Alkaliphily of an Alkaline Xylanase on the Basis of Its Three-dimensional Structure. Journal of Applied Glycoscience (1999), 2010, 57, 145-150.	0.7	4
101	Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiology Letters, 2000, 184, 193-198.	1.8	3
102	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) From Glucose by Escherichia coli Through Butyryl-CoA Formation Driven by Ccr-Emd Combination. Frontiers in Bioengineering and Biotechnology, 2022, 10 , .	4.1	3
103	Bioconversion of Nonnatural Organic Compounds Annals of the New York Academy of Sciences, 1992, 672, 431-435.	3.8	2
104	Anti-phytochelatin monoclonal antibody. Biotechnology Letters, 2000, 22, 1423-1428.	2.2	2
105	Methylotrophic bacterium-based molecular sensor for the detection of low concentrations of methanol. Journal of Bioscience and Bioengineering, 2021, 132, 247-252.	2.2	2
106	Characterization of a GlgC homolog from extremely halophilic archaeon Haloarcula japonica. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1441-1447.	1.3	1
107	Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiology Letters, 1999, 170, 69-75.	1.8	1
108	ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. FEBS Journal, 2001, 268, 1670-1678.	0.2	1