
Johanne Brunet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9362540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Populationâ€specific responses of floral volatiles to abiotic factors in changing environments. American Journal of Botany, 2022, , .	1.7	2
2	Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence. PLoS ONE, 2021, 16, e0248746.	2.5	7
3	Patch selection by bumble bees navigating discontinuous landscapes. Scientific Reports, 2021, 11, 8986.	3.3	12
4	Bee species visiting <i>Medicago sativa</i> differ in pollen deposition curves with consequences for gene flow. American Journal of Botany, 2021, 108, 1016-1028.	1.7	11
5	Self-Fertilization, Inbreeding, and Yield in Alfalfa Seed Production. Frontiers in Plant Science, 2021, 12, 700708.	3.6	8
6	Netting and pan traps fail to identify the pollinator guild of an agricultural crop. Scientific Reports, 2020, 10, 13819.	3.3	19
7	Phenotypic Selection on Flower Color and Floral Display Size by Three Bee Species. Frontiers in Plant Science, 2020, 11, 587528.	3.6	16
8	The Response of Floral Traits Associated with Pollinator Attraction to Environmental Changes Expected under Anthropogenic Climate Change in High-Altitude Habitats. International Journal of Plant Sciences, 2019, 180, 954-964.	1.3	20
9	Surrounding landscape and spatial arrangement of honey bee hives affect pollen foraging and yield in cranberry. Agriculture, Ecosystems and Environment, 2019, 286, 106624.	5.3	10
10	Floral Evolution: Breeding Systems, Pollinators, and Beyond. International Journal of Plant Sciences, 2019, 180, 929-933.	1.3	2
11	Gene Flow in Carrot. Compendium of Plant Genomes, 2019, , 59-76.	0.5	3
12	Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE, 2019, 14, e0212561.	2.5	32
13	Genetic markers to detect introgression of cultivar genes in wild carrot populations. Acta Horticulturae, 2019, , 165-174.	0.2	2
14	The effects of time, temperature and plant variety on pollen viability and its implications for gene flow risk. Plant Biology, 2019, 21, 715-722.	3.8	16
15	Pollinator Decline: Implications for Food Security & amp; Environment. , 2019, , .		1
16	Strong Interspecific Differences in Foraging Activity Observed Between Honey Bees and Bumble Bees Using Miniaturized Radio Frequency Identification (RFID). Frontiers in Ecology and Evolution, 2018, 6, .	2.2	35
17	Using population matrix models to reduce the spread of wild carrot. Acta Horticulturae, 2017, , 273-278.	0.2	3
18	Intra- and interspecific hybridization in invasive Siberian elm. Biological Invasions, 2017, 19, 1889-1904.	2.4	12

JOHANNE BRUNET

#	Article	IF	CITATIONS
19	Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success. American Journal of Botany, 2017, 104, 772-781.	1.7	58
20	Conservation of genetic diversity in slippery elm (Ulmus rubra) in Wisconsin despite the devastating impact of Dutch elm disease. Conservation Genetics, 2016, 17, 1001-1010.	1.5	12
21	The Effects of Flower, Floral Display, and Reward Sizes on Bumblebee Foraging Behavior When Pollen Is the Reward and Plants Are Dichogamous. International Journal of Plant Sciences, 2015, 176, 811-819.	1.3	36
22	Selfing Rate in an Alfalfa Seed Production Field Pollinated with Leafcutter Bees. Crop Science, 2015, 55, 1087-1095.	1.8	18
23	The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, <i>Aquilegia coerulea </i> . Annals of Botany, 2015, 115, 971-979.	2.9	28
24	The Use of Sequence-Based SSR Mining for the Development of a Vast Collection of Microsatellites in <i>Aquilegia formosa</i> . American Journal of Plant Sciences, 2014, 05, 2402-2412.	0.8	1
25	Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy. Biological Invasions, 2013, 15, 2717-2730.	2.4	39
26	The Impact of Global Warming on Floral Traits That Affect the Selfing Rate in a High-Altitude Plant. International Journal of Plant Sciences, 2013, 174, 1099-1108.	1.3	16
27	Genetic structure and domestication of carrot (<i>Daucus carota</i> subsp. <i>sativus</i>) (Apiaceae). American Journal of Botany, 2013, 100, 930-938.	1.7	167
28	The Distribution of Genetic Diversity Within and Among Populations of the Rocky Mountain Columbine: The Impact of Gene Flow, Pollinators, and Mating System. International Journal of Plant Sciences, 2012, 173, 484-494.	1.3	15
29	Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae). Molecular Phylogenetics and Evolution, 2012, 63, 180-192.	2.7	59
30	The response of flowering time to global warming in a high-altitude plant: the impact of genetics and the environment. Botany, 2012, 90, 319-326.	1.0	15
31	ORIGINAL ARTICLE: The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, <i>Ulmus pumila</i> (Ulmaceae). Evolutionary Applications, 2010, 3, 157-168.	3.1	65
32	Impact of Bee Species and Plant Density on Alfalfa Pollination and Potential for Gene Flow. Psyche: Journal of Entomology, 2010, 2010, 1-7.	0.9	23
33	Patterns of hybridization and introgression between invasive <i>Ulmus pumila</i> (Ulmaceae) and native <i>U. rubra</i> . American Journal of Botany, 2009, 96, 1116-1128.	1.7	60
34	Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits. Annals of Botany, 2009, 103, 1567-1578.	2.9	66
35	The influence of distinct pollinators on female and male reproductive success in the Rocky Mountain columbine. Molecular Ecology, 2009, 18, 3745-3758.	3.9	37
36	Impact of density and disease on frequency-dependent selection and genetic polymorphism: experiments with stripe rust and wheat. Evolutionary Ecology, 2008, 22, 637-657.	1.2	6

JOHANNE BRUNET

#	Article	IF	CITATIONS
37	Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.). Molecular Ecology Resources, 2008, 8, 109-112.	4.8	27
38	Genetic diversity and relationships among Dutch elm disease tolerant <i>Ulmus pumila</i> L. accessions from China. Genome, 2008, 51, 492-500.	2.0	22
39	The Maintenance of Selfing in a Population of the Rocky Mountain Columbine. International Journal of Plant Sciences, 2006, 167, 213-219.	1.3	22
40	IMPACT OF INSECT POLLINATOR GROUP AND FLORAL DISPLAY SIZE ON OUTCROSSING RATE. Evolution; International Journal of Organic Evolution, 2006, 60, 234-246.	2.3	113
41	IMPACT OF INSECT POLLINATOR GROUP AND FLORAL DISPLAY SIZE ON OUTCROSSING RATE. Evolution; International Journal of Organic Evolution, 2006, 60, 234.	2.3	3
42	Impact of insect pollinator group and floral display size on outcrossing rate. Evolution; International Journal of Organic Evolution, 2006, 60, 234-46.	2.3	24
43	Polyploidy and Gender Dimorphism. Science, 2001, 291, 1441a-1441.	12.6	8
44	Effects of competition on resistance gene polymorphism in a plant/pathogen system. Heredity, 2000, 85, 393-400.	2.6	17
45	DISEASE, FREQUENCY-DEPENDENT SELECTION, AND GENETIC POLYMORPHISMS: EXPERIMENTS WITH STRIPE RUST AND WHEAT. Evolution; International Journal of Organic Evolution, 2000, 54, 406-415.	2.3	27
46	Combined effects of disease and competition on plant fitness. Canadian Journal of Botany, 2000, 78, 646-654.	1.1	0
47	DISEASE, FREQUENCY-DEPENDENT SELECTION, AND GENETIC POLYMORPHISMS: EXPERIMENTS WITH STRIPE RUST AND WHEAT. Evolution; International Journal of Organic Evolution, 2000, 54, 406.	2.3	5
48	Combined effects of disease and competition on plant fitness. Canadian Journal of Botany, 2000, 78, 646-654.	1.1	3
49	Effects of floral morphology and display on outcrossing in Blue Columbine, Aquilegia caerulea (Ranunculaceae). Functional Ecology, 1998, 12, 596-606.	3.6	106
50	Male Reproductive Success and Variation in Fruit and Seed Set in Aquilegia Caerulea (Ranunculaceae). Ecology, 1996, 77, 2458-2471.	3.2	94
51	FLORAL SEX ALLOCATION IN SEQUENTIALLY BLOOMING PLANTS. Evolution; International Journal of Organic Evolution, 1995, 49, 70-79.	2.3	126
52	Floral Sex Allocation in Sequentially Blooming Plants. Evolution; International Journal of Organic Evolution, 1995, 49, 70.	2.3	95
53	Differential Success of Pollen Donors in a Self-Compatible Lily. Evolution; International Journal of Organic Evolution, 1993, 47, 915.	2.3	14
54	DIFFERENTIAL SUCCESS OF POLLEN DONORS IN A SELF OMPATIBLE LILY. Evolution; International Journal of Organic Evolution, 1993, 47, 915-924.	2.3	74

#	Article	IF	CITATIONS
55	Sex allocation in hermaphroditic plants. Trends in Ecology and Evolution, 1992, 7, 79-84.	8.7	132
56	Hypotheses for the evolution of dioecy in seed plants. Trends in Ecology and Evolution, 1990, 5, 11-16.	8.7	163