
Christian R Voolstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9362359/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Current Biology, 2018, 28, 2570-2580.e6.	3.9	1,242
2	Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications, 2017, 8, 14213.	12.8	529
3	Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends in Microbiology, 2015, 23, 490-497.	7.7	413
4	Differential gene expression during thermal stress and bleaching in the Caribbean coral <i>Montastraea faveolata</i> . Molecular Ecology, 2008, 17, 3952-3971.	3.9	379
5	Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral <i>Montastraea faveolata</i> . ISME Journal, 2009, 3, 512-521.	9.8	364
6	The genome of <i>Aiptasia</i> , a sea anemone model for coral symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11893-11898.	7.1	359
7	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	18.8	327
8	Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 2016, 6, 39734.	3.3	303
9	The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria. Applied and Environmental Microbiology, 2013, 79, 4759-4762.	3.1	291
10	Assessing <i><scp>S</scp>ymbiodinium</i> diversity in scleractinian corals via nextâ€generation sequencingâ€based genotyping of the ITS2 <scp>rDNA</scp> region. Molecular Ecology, 2014, 23, 4418-4433.	3.9	284
11	Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied Microbiology and Biotechnology, 2016, 100, 8315-8324.	3.6	277
12	Differential specificity between closely related corals and abundant <i>Endozoicomonas</i> endosymbionts across global scales. ISME Journal, 2017, 11, 186-200.	9.8	259
13	Coral bacterial community structure responds to environmental change in a host-specific manner. Nature Communications, 2019, 10, 3092.	12.8	224
14	Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals. PLoS ONE, 2012, 7, e35269.	2.5	221
15	Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific Reports, 2017, 7, 40579.	3.3	207
16	SymPortal: A novel analytical framework and platform for coral algal symbiont nextâ€generation sequencing <i>ITS2</i> profiling. Molecular Ecology Resources, 2019, 19, 1063-1080.	4.8	205
17	Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 2016, 105, 629-640.	5.0	197
18	Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4416-4421.	7.1	194

#	Article	IF	CITATIONS
19	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	1.2	194
20	Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Marine Ecology - Progress Series, 2010, 402, 97-113.	1.9	191
21	Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. Trends in Microbiology, 2019, 27, 678-689.	7.7	182
22	Heat stress destabilizes symbiotic nutrient cycling in corals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	179
23	Thermal refugia against coral bleaching throughout the northern Red Sea. Global Change Biology, 2018, 24, e474-e484.	9.5	177
24	Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME Journal, 2018, 12, 161-172.	9.8	174
25	Comparative genomics explains the evolutionary success of reef-forming corals. ELife, 2016, 5, .	6.0	169
26	Microbiome structure of the fungid coral <i><scp>C</scp>tenactis echinata</i> aligns with environmental differences. Molecular Ecology, 2015, 24, 3501-3511.	3.9	162
27	Biogeography and molecular diversity of coral symbionts in the genus <i>Symbiodinium</i> around the Arabian Peninsula. Journal of Biogeography, 2017, 44, 674-686.	3.0	160
28	A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature Microbiology, 2019, 4, 2090-2100.	13.3	160
29	Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Communications Biology, 2018, 1, 95.	4.4	154
30	Adapting with Microbial Help: Microbiome Flexibility Facilitates Rapid Responses to Environmental Change. BioEssays, 2020, 42, e2000004.	2.5	146
31	Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea. PLoS ONE, 2014, 9, e103179.	2.5	144
32	Ocean One: A Robotic Avatar for Oceanic Discovery. IEEE Robotics and Automation Magazine, 2016, 23, 20-29.	2.0	144
33	Gene Expression Variation Resolves Species and Individual Strains among Coral-Associated Dinoflagellates within the Genus <i>Symbiodinium</i> . Genome Biology and Evolution, 2016, 8, 665-680.	2.5	144
34	Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics, 2009, 10, 627.	2.8	140
35	Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Scientific Reports, 2015, 5, 9983.	3.3	137
36	Coral host transcriptomic states are correlated with <i>Symbiodinium</i> genotypes. Molecular Ecology, 2010, 19, 1174-1186.	3.9	136

#	Article	IF	CITATIONS
37	Bacterial profiling of White Plague Disease in a comparative coral species framework. ISME Journal, 2014, 8, 31-39.	9.8	136
38	Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Science Advances, 2018, 4, eaar8028.	10.3	135
39	Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indoâ€Pacific cauliflower corals (<i>Pocillopora</i> , Scleractinia). Journal of Biogeography, 2013, 40, 1595-1608.	3.0	133
40	The host transcriptome remains unaltered during the establishment of coral–algal symbioses. Molecular Ecology, 2009, 18, 1823-1833.	3.9	130
41	Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biology, 2017, 23, 3838-3848.	9.5	130
42	Dominance of <i>Endozoicomonas</i> bacteria throughout coral bleaching and mortality suggests structural inflexibility of the <i>Pocillopora verrucosa</i> microbiome. Ecology and Evolution, 2018, 8, 2240-2252.	1.9	130
43	Coral reef survival under accelerating ocean deoxygenation. Nature Climate Change, 2020, 10, 296-307.	18.8	124
44	Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics, 2008, 9, 97.	2.8	122
45	Longâ€ŧerm salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Molecular Ecology, 2016, 25, 1308-1323.	3.9	121
46	Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Scientific Reports, 2017, 7, 17583.	3.3	121
47	Diatom modulation of select bacteria through use of two unique secondary metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27445-27455.	7.1	118
48	Standardized shortâ€ŧerm acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Global Change Biology, 2020, 26, 4328-4343.	9.5	114
49	Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Science Advances, 2021, 7, .	10.3	114
50	Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment. PLoS ONE, 2011, 6, e20392.	2.5	114
51	Coral Probiotics: Premise, Promise, Prospects. Annual Review of Animal Biosciences, 2021, 9, 265-288.	7.4	113
52	Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Marine Ecology - Progress Series, 2013, 479, 75-84.	1.9	111
53	Extending the natural adaptive capacity of coral holobionts. Nature Reviews Earth & Environment, 2021, 2, 747-762.	29.7	110
54	Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics, 2013, 14, 704.	2.8	109

#	Article	IF	CITATIONS
55	Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata. PLoS ONE, 2010, 5, e11221.	2.5	108
56	Reefgenomics.Org - a repository for marine genomics data. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw152.	3.0	104
57	An improved primer set and amplification protocol with increased specificity and sensitivity targeting the <i>Symbiodinium</i> ITS2 region. PeerJ, 2018, 6, e4816.	2.0	102
58	The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling, 2013, 29, 617-627.	2.2	97
59	Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME Journal, 2020, 14, 325-334.	9.8	97
60	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
61	In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE, 2013, 8, e62091.	2.5	94
62	Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Scientific Reports, 2016, 6, 32366.	3.3	85
63	Bacterial profiling of <scp>W</scp> hite <scp>P</scp> lague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Molecular Ecology, 2014, 23, 965-974.	3.9	83
64	In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE, 2018, 13, e0195814.	2.5	82
65	Designing a blueprint for coral reef survival. Biological Conservation, 2021, 257, 109107.	4.1	82
66	Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecology and Evolution, 2019, 9, 938-956.	1.9	81
67	Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in <i>Orbicella faveolata</i> . ISME Journal, 2014, 8, 2411-2422.	9.8	80
68	DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Science Advances, 2018, 4, eaat2142.	10.3	77
69	Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Scientific Reports, 2016, 6, 27277.	3.3	76
70	Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 2018, 13, e0208223.	2.5	76
71	Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome, 2020, 8, 8.	11.1	75
72	Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 2015, 5, 8940.	3.3	74

#	Article	IF	CITATIONS
73	Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria. Microbial Ecology, 2017, 73, 466-478.	2.8	74
74	Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Frontiers in Physiology, 2018, 9, 214.	2.8	72
75	From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Scientific Reports, 2016, 5, 17889.	3.3	70
76	Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Scientific Reports, 2017, 7, 45362.	3.3	70
77	Structural Molecular Components of Septate Junctions in Cnidarians Point to the Origin of Epithelial Junctions in Eukaryotes. Molecular Biology and Evolution, 2015, 32, 44-62.	8.9	69
78	Seasonal Stability in the Microbiomes of Temperate Gorgonians and the Red Coral Corallium rubrum Across the Mediterranean Sea. Microbial Ecology, 2018, 75, 274-288.	2.8	69
79	Increasing comparability among coral bleaching experiments. Ecological Applications, 2021, 31, e02262.	3.8	68
80	Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Molecular Ecology, 2021, 30, 4466-4480.	3.9	68
81	Developmental transcriptome of <i>Aplysia californica'</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 113-134.	1.3	67
82	Distinct Bacterial Communities Associated with the Coral Model Aiptasia in Aposymbiotic and Symbiotic States with Symbiodinium. Frontiers in Marine Science, 2016, 3, .	2.5	67
83	Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Molecular Ecology, 2020, 29, 899-911.	3.9	67
84	Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Frontiers in Marine Science, 2015, 2, .	2.5	66
85	Revealing microbial functional activities in the <scp>R</scp> ed <scp>S</scp> ea sponge <scp><i>S</i></scp> <i>tylissa carteri</i> by metatranscriptomics. Environmental Microbiology, 2014, 16, 3683-3698.	3.8	64
86	Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
87	Whole-Genome Sequences of Three Symbiotic <i>Endozoicomonas</i> Strains. Genome Announcements, 2014, 2, .	0.8	62
88	Identification and Gene Expression Analysis of a Taxonomically Restricted Cysteine-Rich Protein Family in Reef-Building Corals. PLoS ONE, 2009, 4, e4865.	2.5	62
89	Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease. Frontiers in Marine Science, 2015, 2, .	2.5	61
90	Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics, 2016, 17, 158.	2.8	60

#	Article	IF	CITATIONS
91	Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS ONE, 2016, 11, e0163939.	2.5	59
92	Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME Journal, 2018, 12, 59-76.	9.8	58
93	Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genetics, 2017, 13, e1006619.	3.5	57
94	Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs, 2014, 33, 1115-1129.	2.2	56
95	Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association. Marine Ecology - Progress Series, 2015, 533, 149-161.	1.9	56
96	Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nature Genetics, 2021, 53, 618-629.	21.4	54
97	Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology, 2019, 133, 81-87.	1.2	53
98	The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Science Advances, 2017, 3, e1602047.	10.3	52
99	Worldwide Occurrence and Activity of the Reef-Building Coral Symbiont Symbiodinium in the Open Ocean. Current Biology, 2018, 28, 3625-3633.e3.	3.9	52
100	Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups. Frontiers in Microbiology, 2017, 8, 1187.	3.5	51
101	Identification of Differentially Expressed Genes Involved in the Formation of Multicellular Tumor Spheroids by HT-29 Colon Carcinoma Cells. Molecular Therapy, 2007, 15, 94-102.	8.2	50
102	Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Marine Genomics, 2010, 3, 51-62.	1.1	49
103	First biological measurements of deep-sea corals from the Red Sea. Scientific Reports, 2013, 3, 2802.	3.3	49
104	Identification of MicroRNAs in the Coral Stylophora pistillata. PLoS ONE, 2014, 9, e91101.	2.5	49
105	The Tara Pacific expedition—A pan-ecosystemic approach of the "-omics―complexity of coral reef holobionts across the Pacific Ocean. PLoS Biology, 2019, 17, e3000483.	5.6	48
106	Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Molecular Ecology, 2011, 20, 2955-2972.	3.9	47
107	Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs, 2020, 39, 701-716.	2.2	47
108	In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea. PLoS ONE, 2013, 8, e66992.	2.5	47

#	Article	IF	CITATIONS
109	Rapid transcriptome and proteome profiling of a nonâ€model marine invertebrate, <i>Bugula neritina</i> . Proteomics, 2010, 10, 2972-2981.	2.2	46
110	The Chloroplast Genome of a Symbiodinium sp. Clade C3 Isolate. Protist, 2014, 165, 1-13.	1.5	46
111	A journey into the wild of the cnidarian model system <i><scp>A</scp>iptasia</i> and its symbionts. Molecular Ecology, 2013, 22, 4366-4368.	3.9	45
112	Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnology and Oceanography, 2021, 66, 1718-1729.	3.1	45
113	Insights into the Cultured Bacterial Fraction of Corals. MSystems, 2021, 6, e0124920.	3.8	45
114	Coralâ€bleaching responses to climate change across biological scales. Global Change Biology, 2022, 28, 4229-4250.	9.5	44
115	Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata. Marine Genomics, 2009, 2, 149-159.	1.1	42
116	Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts. Frontiers in Microbiology, 2017, 8, 1220.	3.5	42
117	High salinity conveys thermotolerance in the coral model Aiptasia. Biology Open, 2017, 6, 1943-1948.	1.2	42
118	Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). Frontiers in Marine Science, 2019, 6, .	2.5	42
119	Divergent expression of hypoxia response systems under deoxygenation in reefâ€forming corals aligns with bleaching susceptibility. Global Change Biology, 2021, 27, 312-326.	9.5	42
120	Coral reefs of the Red Sea—ÂChallenges and potential solutions. Regional Studies in Marine Science, 2019, 25, 100498.	0.7	41
121	Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Frontiers in Marine Science, 2015, 2, .	2.5	40
122	Environmental latitudinal gradients and hostâ€specificity shape Symbiodiniaceae distribution in Red Sea <i>Porites</i> corals. Journal of Biogeography, 2019, 46, 2323-2335.	3.0	39
123	Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs, 2020, 39, 583-601.	2.2	39
124	Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea. Coral Reefs, 2016, 35, 681-693.	2.2	38
125	Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs, 2017, 36, 773-784.	2.2	36
126	Coral holobiont cues prime <i>Endozoicomonas</i> for a symbiotic lifestyle. ISME Journal, 2022, 16, 1883-1895.	9.8	36

#	Article	IF	CITATIONS
127	Critical research needs for identifying future changes in Gulf coral reef ecosystems. Marine Pollution Bulletin, 2013, 72, 406-416.	5.0	35
128	Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs, 2017, 36, 981-985.	2.2	35
129	Evidence for mi <scp>RNA</scp> â€mediated modulation of the host transcriptome in cnidarian–dinoflagellate symbiosis. Molecular Ecology, 2018, 27, 403-418.	3.9	35
130	Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2009, 4, 67-74.	1.0	34
131	Science, Diplomacy, and the Red Sea's Unique Coral Reef: It's Time for Action. Frontiers in Marine Science, 2020, 7, .	2.5	34
132	Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1). Marine Drugs, 2016, 14, 28.	4.6	33
133	Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Scientific Reports, 2017, 7, 44714.	3.3	33
134	Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start?. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	32
135	Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species. Frontiers in Microbiology, 2017, 8, 2518.	3.5	32
136	The Red Sea: Environmental Gradients Shape a Natural Laboratory in a Nascent Ocean. Coral Reefs of the World, 2019, , 1-10.	0.7	32
137	Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global Change Biology, 2022, 28, 1753-1765.	9.5	32
138	Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ, 2018, 6, e5169.	2.0	32
139	Expression of a symbiosis-specific gene in <i>Symbiodinium</i> type A1 associated with coral, nudibranch and giant clam larvae. Royal Society Open Science, 2017, 4, 170253.	2.4	31
140	Disentangling the complex microbial community of coral reefs using standardized Autonomous Reef Monitoring Structures (ARMS). Molecular Ecology, 2019, 28, 3496-3507.	3.9	31
141	Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities. Frontiers in Marine Science, 2017, 4, .	2.5	30
142	Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. IScience, 2020, 23, 101120.	4.1	30
143	High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Frontiers in Marine Science, 2014, 1, .	2.5	29
144	Distinct Bacterial Microbiomes Associate with the Deep-Sea Coral Eguchipsammia fistula from the Red Sea and from Aquaria Settings. Frontiers in Marine Science, 2017, 4, .	2.5	29

#	Article	IF	CITATIONS
145	An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods in Ecology and Evolution, 2019, 10, 712-725.	5.2	29
146	An optimized embryonic stem cell model for consistent gene expression and developmental studies. A fundamental study. Thrombosis and Haemostasis, 2005, 94, 719-27.	3.4	28
147	Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nature Communications, 2021, 12, 6402.	12.8	28
148	Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts. Frontiers in Marine Science, 2017, 4, .	2.5	27
149	Key Questions for Research and Conservation of Mesophotic Coral Ecosystems and Temperate Mesophotic Ecosystems. Coral Reefs of the World, 2019, , 989-1003.	0.7	27
150	Denitrification Aligns with N2 Fixation in Red Sea Corals. Scientific Reports, 2019, 9, 19460.	3.3	27
151	Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs, 2022, 41, 239-252.	2.2	26
152	Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiology, 2017, 17, 174.	3.3	23
153	Carbohydrate composition of mucus from scleractinian corals from the central Red Sea. Coral Reefs, 2019, 38, 21-27.	2.2	23
154	The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biology and Evolution, 2020, 12, 1911-1917.	2.5	23
155	Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition. Frontiers in Marine Science, 2021, 8, .	2.5	23
156	Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Global Change Biology, 2021, 27, 5532-5546.	9.5	23
157	The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. , 2020, , 91-118.		23
158	Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebrate Systematics, 2017, 31, 1.	1.3	22
159	Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals. Scientific Reports, 2017, 7, 6442.	3.3	21
160	Coral reef carbonate budgets and ecological drivers in the central Red Sea – a naturally high temperature and high total alkalinity environment. Biogeosciences, 2018, 15, 6277-6296.	3.3	21
161	Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Animal Microbiome, 2019, 1, 13.	3.8	21
162	High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biology Open, 2019, 8, .	1.2	21

#	Article	IF	CITATIONS
163	Similar bacterial communities on healthy and injured skin of black tip reef sharks. Animal Microbiome, 2019, 1, 9.	3.8	21
164	Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Frontiers in Microbiology, 2021, 12, 637834.	3.5	21
165	Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME Journal, 2022, 16, 1110-1118.	9.8	21
166	Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. ISME Journal, 2022, 16, 2406-2420.	9.8	21
167	A change of expression in the conserved signaling gene MKK7 is associated with a selective sweep in the western house mouse Mus musculus domesticus. Journal of Evolutionary Biology, 2006, 19, 1486-1496.	1.7	20
168	The World Coral Conservatory (WCC): A Noah's ark for corals to support survival of reef ecosystems. PLoS Biology, 2020, 18, e3000823.	5.6	20
169	Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS ONE, 2017, 12, e0177316.	2.5	20
170	In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Marine Ecology - Progress Series, 2020, 645, 55-66.	1.9	20
171	High-resolution phenotypic profiling of natural products-induced effects on the single-cell level. Scientific Reports, 2017, 7, 44472.	3.3	19
172	Transcriptional response of the heat shock gene hsp70 aligns with differences in stress susceptibility of shallow-water corals from the Mediterranean Sea. Marine Environmental Research, 2018, 140, 444-454.	2.5	19
173	Low Symbiodiniaceae diversity in a turbid marginal reef environment. Coral Reefs, 2020, 39, 545-553.	2.2	19
174	A TEST OF THE NEUTRAL MODEL OF EXPRESSION CHANGE IN NATURAL POPULATIONS OF HOUSE MOUSE SUBSPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, 549-560.	2.3	17
175	Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral <i>Pocillopora verrucosa</i> . Ecology and Evolution, 2017, 7, 6614-6621.	1.9	17
176	Advanced identification of global bioactivity hotspots via screening of the metabolic fingerprint of entire ecosystems. Scientific Reports, 2020, 10, 1319.	3.3	17
177	Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling. Marine Drugs, 2017, 15, 80.	4.6	16
178	Identification of a 3-Alkylpyridinium Compound from the Red Sea Sponge Amphimedon chloros with In Vitro Inhibitory Activity against the West Nile Virus NS3 Protease. Molecules, 2018, 23, 1472.	3.8	16
179	Coral-Associated Viral Assemblages From the Central Red Sea Align With Host Species and Contribute to Holobiont Genetic Diversity. Frontiers in Microbiology, 2020, 11, 572534.	3.5	16
180	Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Scientific Reports, 2020, 10, 9783.	3.3	16

#	Article	IF	CITATIONS
181	<i>In situ</i> effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea. PeerJ, 2014, 2, e339.	2.0	16
182	High summer temperatures amplify functional differences between coral―and algaeâ€dominated reef communities. Ecology, 2021, 102, e03226.	3.2	15
183	Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells. PLoS ONE, 2014, 9, e103895.	2.5	14
184	Longâ€Term Impacts of the 1997–1998 Bleaching Event on the Growth and Resilience of Massive <i>Porites</i> Corals From the Central Red Sea. Geochemistry, Geophysics, Geosystems, 2019, 20, 2936-2954.	2.5	14
185	A comparative baseline of coral disease in three regions along the Saudi Arabian coast of the central Red Sea. PLoS ONE, 2021, 16, e0246854.	2.5	14
186	Microbes support enhanced nitrogen requirements of coral holobionts in a high CO ₂ environment. Molecular Ecology, 2021, 30, 5888-5899.	3.9	14
187	Urbanization comprehensively impairs biological rhythms in coral holobionts. Global Change Biology, 2022, 28, 3349-3364.	9.5	14
188	Tissue-Specific Microbiomes of the Red Sea Giant Clam Tridacna maxima Highlight Differential Abundance of Endozoicomonadaceae. Frontiers in Microbiology, 2019, 10, 2661.	3.5	13
189	Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. MSystems, 2022, 7, .	3.8	13
190	Physical Mechanisms Routing Nutrients in the Central Red Sea. Journal of Geophysical Research: Oceans, 2017, 122, 9032-9046.	2.6	12
191	First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data. PeerJ, 2018, 6, e4449.	2.0	12
192	Widespread oxyregulation in tropical corals under hypoxia. Marine Pollution Bulletin, 2022, 179, 113722.	5.0	12
193	Nutrient stress arrests tentacle growth in the coral model Aiptasia. Symbiosis, 2019, 78, 61-64.	2.3	11
194	High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Functional Ecology, 2020, 34, 1991-2004.	3.6	11
195	Hypoxia as a physiological cue and a pathological stress for coral larvae. Molecular Ecology, 2021, , .	3.9	11
196	Relative Diazotroph Abundance in Symbiotic Red Sea Corals Decreases With Water Depth. Frontiers in Marine Science, 2019, 6, .	2.5	10
197	Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Scientific Reports, 2021, 11, 11820.	3.3	10
198	Captive rearing of the deep-sea coral <i>Eguchipsammia fistula</i> from the Red Sea demonstrates remarkable physiological plasticity. PeerJ, 2015, 3, e734.	2.0	10

#	Article	IF	CITATIONS
199	Unexpected complexity of the Reef-Building Coral Acropora millepora transcription factor network. BMC Systems Biology, 2011, 5, 58.	3.0	9
200	Microbial Communities of Red Sea Coral Reefs. Coral Reefs of the World, 2019, , 53-68.	0.7	9
201	Tara Pacific Expedition's Atmospheric Measurements of Marine Aerosols across the Atlantic and Pacific Oceans: Overview and Preliminary Results. Bulletin of the American Meteorological Society, 2020, 101, E536-E554.	3.3	9
202	A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Scientific Reports, 2020, 10, 15893.	3.3	9
203	Genome-Based Analyses of Six Hexacorallian Species Reject the "Naked Coral―Hypothesis. Genome Biology and Evolution, 2017, 9, 2626-2634.	2.5	8
204	Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems. Marine Pollution Bulletin, 2018, 129, 392-398.	5.0	8
205	Ecophysiology of Reef-Building Corals in the Red Sea. Coral Reefs of the World, 2019, , 33-52.	0.7	8
206	Evolutionary insights into scleractinian corals using comparative genomic hybridizations. BMC Genomics, 2012, 13, 501.	2.8	7
207	Evidence for a role of protein phosphorylation in the maintenance of the cnidarian–algal symbiosis. Molecular Ecology, 2019, 28, 5373-5386.	3.9	7
208	The many faced symbiotic snakelocks anemone (Anemonia viridis, Anthozoa): host and symbiont genetic differentiation among colour morphs. Heredity, 2020, 124, 351-366.	2.6	7
209	Flexibility in Red Sea Tridacna maxima â€Symbiodiniaceae associations supports environmental niche adaptation. Ecology and Evolution, 2021, 11, 3393-3406.	1.9	7
210	Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin, 2021, 168, 112444.	5.0	7
211	A Closing Window of Opportunity to Save a Unique Marine Ecosystem. Frontiers in Marine Science, 2020, 7, .	2.5	7
212	Salinity-Conveyed Thermotolerance in the Coral Model Aiptasia Is Accompanied by Distinct Changes of the Bacterial Microbiome. Frontiers in Marine Science, 2020, 7, .	2.5	7
213	Effects of Ocean Acidification on Resident and Active Microbial Communities of Stylophora pistillata. Frontiers in Microbiology, 2021, 12, 707674.	3.5	7
214	Symbiodiniaceae Diversity in Red Sea Coral Reefs & Coral Bleaching. Coral Reefs of the World, 2019, , 69-89.	0.7	6
215	Simultaneous Measurements of Dinitrogen Fixation and Denitrification Associated With Coral Reef Substrates: Advantages and Limitations of a Combined Acetylene Assay. Frontiers in Marine Science, 2020, 7, .	2.5	6
216	Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. Royal Society Open Science, 2021, 8, 201835.	2.4	6

#	Article	IF	CITATIONS
217	First record of crustose coralline algae diseases in the Red Sea. Bulletin of Marine Science, 2017, 93, 985-986.	0.8	6
218	Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics, 2022, 23, 143.	2.8	6
219	Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Marine Drugs, 2022, 20, 27.	4.6	6
220	Disparate Inventories of Hypoxia Gene Sets Across Corals Align With Inferred Environmental Resilience. Frontiers in Marine Science, 2022, 9, .	2.5	6
221	Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.). Conservation Genetics Resources, 2013, 5, 561-563.	0.8	5
222	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695.	1.2	5
223	Diel cycle of sea spray aerosol concentration. Nature Communications, 2021, 12, 5476.	12.8	5
224	Highly Variable and Non-complex Diazotroph Communities in Corals From Ambient and High CO2 Environments. Frontiers in Marine Science, 2021, 8, .	2.5	5
225	High light quantity suppresses locomotion in symbiotic Aiptasia. Symbiosis, 2022, 86, 293-304.	2.3	5
226	<i>Xestospongia testudinaria</i> nighttime mass spawning observation in Indonesia. Galaxea, 2016, 18, 1-2.	0.7	4
227	Repeated observations of cetaceans and carcharhiniformes associations in the Red Sea. Marine Biodiversity, 2016, 46, 25-26.	1.0	4
228	Coral Bleaching: A Colorful Struggle for Survival. Current Biology, 2020, 30, R768-R770.	3.9	4
229	High plasticity of nitrogen fixation and denitrification of common coral reef substrates in response to nitrate availability. Marine Pollution Bulletin, 2021, 168, 112430.	5.0	4
230	Contrasting Microbiome Dynamics of Putative Denitrifying Bacteria in Two Octocoral Species Exposed to Dissolved Organic Carbon (DOC) and Warming. Applied and Environmental Microbiology, 2022, 88, AEM0188621.	3.1	4
231	Evolutionary Cell Biology (ECB): Lessons, challenges, and opportunities for the integrative study of cell evolution. Journal of Biosciences, 2021, 46, 1.	1.1	3
232	Symbiodinium microadriaticum (coral microalgal endosymbiont). Trends in Genetics, 2021, 37, 1044-1045.	6.7	3
233	Identification of a gene expression core signature for Duchenne muscular dystrophy (DMD) via integrative analysis reveals novel potential compounds for treatment. , 2010, , .		2
234	Corrigendum to: Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebrate Systematics, 2017, 31, 231.	1.3	2

#	Article	IF	CITATIONS
235	Editorial: Coral Reefs in the Anthropocene – Reflecting on 20 Years of Reef Conservation UK. Frontiers in Marine Science, 2020, 7, .	2.5	2
236	A new species of squat lobster of the genus Munida (Galatheoidea, Munididae) from the Red Sea. Crustaceana, 2017, 90, 1005-1014.	0.3	1
237	Physicochemical Dynamics, Microbial Community Patterns, and Reef Growth in Coral Reefs of the Central Red Sea. Springer Oceanography, 2019, , 401-418.	0.3	1
238	A Salty Coral Secret: How High Salinity Helps Corals To Be Stronger. Frontiers for Young Minds, 0, 7, .	0.8	1
239	Development of the Red Sea Biogeographic Information System. , 2010, , .		0
240	Shining light on deep-sea bioluminescence. Editorial comment on the highlight article "Biochemical characterization of diverse deep-sea anthozoan bioluminescence systems―by M. Bessho-Uehara et al. 2020. Marine Biology, 2020, 167, 1.	1.5	0
241	Horizontal acquisition of Symbiodiniaceae in the <i>Anemonia viridis</i> (Cnidaria, Anthozoa) species complex. Molecular Ecology, 2021, 30, 391-405.	3.9	0
242	High Summer Temperatures Amplify Functional Differences Between Coral―and Algaeâ€Dominated Reef Communities. Bulletin of the Ecological Society of America, 2021, 102, e01822.	0.2	0
243	Marine Aerosols: Measurements by the Tara Pacific Expedition. Bulletin of the American Meteorological Society, 2020, 101, 499-504.	3.3	0
244	Corals Are Sick: Black Band Disease Is Attacking. Frontiers for Young Minds, 0, 8, .	0.8	0