Brett William Stringer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9361235/publications.pdf

Version: 2024-02-01

55 2,167 24 45
papers citations h-index g-index

57 57 57 4433 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	STAT3 Enhances Sensitivity of Glioblastoma to Drug-Induced Autophagy-Dependent Cell Death. Cancers, 2022, 14, 339.	3.7	6
2	Long-term adherence of human brain cells inÂvitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports, 2022, 17, 489-506.	4.8	11
3	Transcriptomic Profiling of DNA Damage Response in Patient-Derived Glioblastoma Cells before and after Radiation and Temozolomide Treatment. Cells, 2022, 11, 1215.	4.1	5
4	Neutralisation of adeno-associated virus transduction by human vitreous humour. Gene Therapy, 2021, 28, 242-255.	4.5	6
5	Targeting Orphan G Protein-Coupled Receptor 17 with TO Ligand Impairs Glioblastoma Growth. Cancers, 2021, 13, 3773.	3.7	7
6	Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. Journal of Neuro-Oncology, 2020, 146, 41-53.	2.9	18
7	SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion. Cells, 2020, 9, 2488.	4.1	8
8	The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism. Cancers, 2020, 12, 3722.	3.7	10
9	MK2 Inhibition Induces p53-Dependent Senescence in Glioblastoma Cells. Cancers, 2020, 12, 654.	3.7	5
10	Constitutive CHK1 Expression Drives a pSTAT3–CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Molecular Cancer Research, 2020, 18, 709-722.	3.4	15
11	Q-Cell Glioblastoma Resource: Proteomics Analysis Reveals Unique Cell-States Are Maintained in 3D Culture. Cells, 2020, 9, 267.	4.1	12
12	Lower Tubulin Expression in Glioblastoma Stem Cells Attenuates Efficacy of Microtubule-Targeting Agents. ACS Pharmacology and Translational Science, 2019, 2, 402-413.	4.9	14
13	The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathologica, 2019, 138, 1033-1052.	7.7	19
14	Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore. Neuro-Oncology, 2019, 22, 216-228.	1.2	8
15	A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Scientific Reports, 2019, 9, 4902.	3.3	127
16	Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer, 2019, 19, 157.	2.6	15
17	Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers, 2019, 11, 190.	3.7	39
18	Novel dualâ€action prodrug triggers apoptosis in glioblastoma cells by releasing a glutathione quencher and lysineâ€specific histone demethylase 1A inhibitor. Journal of Neurochemistry, 2019, 149, 535-550.	3.9	11

#	Article	IF	Citations
19	Extracellular Vesicles Released by Glioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways. Molecular Neurobiology, 2019, 56, 4566-4581.	4.0	77
20	Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. Journal of Neuro-Oncology, 2019, 141, 303-313.	2.9	10
21	Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 2019, 38, 1151-1165.	5.9	21
22	A unique ¹⁹ F MRI agent for the tracking of non phagocytic cells <i>in vivo</i> Nanoscale, 2018, 10, 8226-8239.	5.6	42
23	EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers, 2018, 10, 519.	3.7	25
24	Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacological Research, 2018, 134, 166-178.	7.1	8
25	Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. Journal of Medicinal Chemistry, 2017, 60, 2052-2070.	6.4	41
26	Dianthin-30 or gelonin versus monomethyl auristatin E, each configured with an anti-calcitonin receptor antibody, are differentially potent in vitro in high-grade glioma cell lines derived from glioblastoma. Cancer Immunology, Immunotherapy, 2017, 66, 1217-1228.	4.2	15
27	Development and Biological Evaluation of a Photoactivatable Small Molecule Microtubule-Targeting Agent. ACS Medicinal Chemistry Letters, 2017, 8, 395-400.	2.8	28
28	EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia, 2017, 31, 1779-1787.	7.2	29
29	Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget, 2017, 8, 16605-16620.	1.8	30
30	Differential response of patient-derived primary glioblastoma cells to environmental stiffness. Scientific Reports, 2016, 6, 23353.	3.3	68
31	Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. British Journal of Cancer, 2016, 114, 188-198.	6.4	16
32	Nuclear factor one B (<i>NFIB</i>) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget, 2016, 7, 29306-29320.	1.8	34
33	Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. Journal of Medical Radiation Sciences, 2015, 62, 92-98.	1.5	35
34	Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anatomy and Cell Biology, 2015, 48, 25.	1.0	49
35	EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Molecular Imaging, 2015, 14, 7290.2015.00008.	1.4	24
36	The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. Journal of Neuro-Oncology, 2015, 122, 263-271.	2.9	44

#	Article	IF	Citations
37	Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling. Biochemical Pharmacology, 2015, 98, 587-601.	4.4	15
38	EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Molecular Imaging, 2015, 14, 385-99.	1.4	12
39	Eph receptors as therapeutic targets in glioblastoma. British Journal of Cancer, 2014, 111, 1255-1261.	6.4	62
40	Eph family co-expression patterns define unique clusters predictive of cancer phenotype. Growth Factors, 2014, 32, 254-264.	1.7	10
41	The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma. Tumor Biology, 2014, 35, 1459-1465.	1.8	26
42	NFIB-Mediated Repression of the Epigenetic Factor <i>Ezh2</i> Regulates Cortical Development. Journal of Neuroscience, 2014, 34, 2921-2930.	3.6	70
43	Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Molecular Oncology, 2014, 8, 1603-1615.	4.6	61
44	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	14.8	408
45	EphA3 Maintains Tumorigenicity and Is a Therapeutic Target in Glioblastoma Multiforme. Cancer Cell, 2013, 23, 238-248.	16.8	193
46	A Metabolic Shift Favoring Sphingosine 1-Phosphate at the Expense of Ceramide Controls Glioblastoma Angiogenesis. Journal of Biological Chemistry, 2013, 288, 37355-37364.	3.4	90
47	Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research. Cancers, 2013, 5, 357-371.	3.7	48
48	The Transcription Factor C/EBP- \hat{l}^2 Mediates Constitutive and LPS-Inducible Transcription of Murine SerpinB2. PLoS ONE, 2013, 8, e57855.	2.5	16
49	Regulation of the Human Plasminogen Activator Inhibitor Type 2 Gene. Journal of Biological Chemistry, 2012, 287, 10579-10589.	3.4	13
50	ELK4 neutralization sensitizes glioblastoma to apoptosis through downregulation of the anti-apoptotic protein Mcl-1. Neuro-Oncology, 2011, 13, 1202-1212.	1.2	32
51	Ephrin expression and function in cancer. Future Oncology, 2010, 6, 165-176.	2.4	19
52	The Glycosylphosphatidylinositol-Anchored Serine Protease PRSS21 (Testisin) Imparts Murine Epididymal Sperm Cell Maturation and Fertilizing Ability1. Biology of Reproduction, 2009, 81, 921-932.	2.7	76
53	Inhibition of Retinoblastoma Protein Degradation by Interaction with the Serpin Plasminogen Activator Inhibitor 2 via a Novel Consensus Motif. Molecular and Cellular Biology, 2003, 23, 6520-6532.	2.3	64
54	DNase I hypersensitive sites in the 5' flanking region of the human plasminogen activator inhibitor type 2 (PAI-2) gene are associated with basal and tumor necrosis factor-alpha-induced transcription in monocytes. FEBS Journal, 1998, 256, 550-559.	0.2	3

#	Article	lF	CITATIONS
55	Southwestern blot mapping of potential regulatory proteins binding to the DNA encoding plasminogen activator inhibitor type 2. Gene, 1993, 134, 201-208.	2.2	17