
Annamaria Locascio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2000, 2, 76-83.	10.3	3,208
2	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
3	Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene, 2002, 21, 3241-3246.	5.9	522
4	A New Role for E12/E47 in the Repression ofE-cadherin Expression and Epithelial-Mesenchymal Transitions. Journal of Biological Chemistry, 2001, 276, 27424-27431.	3.4	395
5	The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. Molecular Cancer Research, 2002, 1, 68-78.	3.4	172
6	Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. Current Opinion in Genetics and Development, 2001, 11, 464-469.	3.3	136
7	Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proceedings of the United States of America, 2002, 99, 16841-16846.	7.1	106
8	The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends in Genetics, 2001, 17, 178-181.	6.7	100
9	The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. Differentiation, 2006, 74, 222-234.	1.9	60
10	Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Developmental Biology, 2007, 306, 772-784.	2.0	50
11	Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis. Mechanisms of Development, 1999, 88, 123-126.	1.7	46
12	Ci-POU-IV expression identifies PNS neurons in embryos and larvae of the ascidian Ciona intestinalis. Development Genes and Evolution, 2005, 215, 41-45.	0.9	39
13	Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Developmental Biology, 2004, 267, 517-528.	2.0	35
14	Natural Variation of Model Mutant Phenotypes in Ciona intestinalis. PLoS ONE, 2008, 3, e2344.	2.5	29
15	Isolation of cDNA clones encoding DNA methyltransferase of sea urchin P. lividus: Expression during embryonic development. Gene, 1996, 178, 57-61.	2.2	27
16	Biological Potential of a Functional Human SNAILRetrogene. Journal of Biological Chemistry, 2002, 277, 38803-38809.	3.4	27
17	Evolution of anterior Hox regulatory elements among chordates. BMC Evolutionary Biology, 2011, 11, 330.	3.2	25
18	A comprehensive analysis of neurotrophins and neurotrophin tyrosine kinase receptors expression during development of zebrafish. Journal of Comparative Neurology, 2018, 526, 1057-1072.	1.6	25

Annamaria Locascio

#	Article	IF	CITATIONS
19	A Rapid and Cheap Methodology for CRISPR/Cas9 Zebrafish Mutant Screening. Molecular Biotechnology, 2016, 58, 73-78.	2.4	24
20	Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Developmental Biology, 2011, 355, 358-371.	2.0	23
21	Sea as a color palette: the ecology and evolution of fluorescence. Zoological Letters, 2020, 6, 9.	1.3	22
22	Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis. Development Growth and Differentiation, 1998, 40, 387-394.	1.5	20
23	Differential expression of duplicated genes for prothymosin alpha during zebrafish development. Developmental Dynamics, 2008, 237, 1112-1118.	1.8	17
24	Expression of Prothymosin alpha during the spermatogenesis of the spotted ray Torpedo marmorata. General and Comparative Endocrinology, 2009, 164, 70-76.	1.8	15
25	The ascidian pigmented sensory organs: structures and developmental programs. Genesis, 2015, 53, 15-33.	1.6	14
26	Auto and cross regulatory elements control Onecut expression in the ascidian nervous system. Developmental Biology, 2014, 390, 273-287.	2.0	13
27	An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. Marine Environmental Research, 2020, 158, 104950.	2.5	13
28	Natural organic matterÂcontrols metal speciation and toxicity for marine organisms: a review. Environmental Chemistry Letters, 2022, 20, 797-812.	16.2	13
29	Regulatory elements retained during chordate evolution: Coming across tunicates. Genesis, 2015, 53, 66-81.	1.6	8
30	DNA (cytosine-5) methyltransferase turnover and cellular localization in developing Paracentrotus lividus sea urchin embryo. Gene, 2001, 272, 199-208.	2.2	6
31	PLAUF binding to the $3\hat{a}\in^2$ UTR of the H3.3 histone transcript affects mRNA stability. Gene, 2007, 406, 124-133.	2.2	5
32	Functional conserved non-coding elements among tunicates and chordates. Developmental Biology, 2019, 448, 101-110.	2.0	5
33	Onecut Regulates Core Components of the Molecular Machinery for Neurotransmission in Photoreceptor Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 602450.	3.7	5
34	Evolutionary Adaptation of the Thyroid Hormone Signaling Toolkit in Chordates. Cells, 2021, 10, 3391.	4.1	5
35	Novel Insights on Nitric Oxide Synthase and NO Signaling in Ascidian Metamorphosis. International Journal of Molecular Sciences, 2022, 23, 3505.	4.1	5
36	Structural organization of the sea urchin DNA (cytosine-5)-methyltransferase gene and characterization of five alternative spliced transcripts. Gene, 2003, 302, 1-9.	2.2	4

#	Article	IF	CITATIONS
37	Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates. Development Genes and Evolution, 2020, 230, 329-338.	0.9	3
38	Mutation studies in ascidians: A review. Genesis, 2015, 53, 160-169.	1.6	2
39	Vertebrate Eye Evolution. , 2016, , 275-298.		2
40	The Ascidia Ciona robusta Provides Novel Insights on the Evolution of the AP-1 Transcriptional Complex. Frontiers in Cell and Developmental Biology, 2021, 9, 709696.	3.7	2
41	Comparative analysis of novel and common reference genes in adult tissues of the mussel Mytilus galloprovincialis. BMC Genomics, 2022, 23, 349.	2.8	2