List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360536/publications.pdf Version: 2024-02-01

ILLAN PEDRO HOLCADO

#	Article	IF	CITATIONS
1	LED-driven controlled deposition of Ni onto TiO2 for visible-light expanded conversion of carbon dioxide into C1–C2 alkanes. Nanoscale Advances, 2021, 3, 3788-3798.	4.6	6
2	Examination of the Deactivation Cycle of NiAl- and NiMgAl-Hydrotalcite Derived Catalysts in the Dry Reforming of Methane. Catalysis Letters, 2021, 151, 2696-2715.	2.6	11
3	Comprehensive Experimental and Theoretical Study of the CO + NO Reaction Catalyzed by Au/Ni Nanoparticles. ACS Catalysis, 2019, 9, 4919-4929.	11.2	22
4	Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane. Applied Catalysis B: Environmental, 2019, 243, 490-501.	20.2	178
5	Critical Role of Oxygen in Silver-Catalyzed Glaser–Hay Coupling on Ag(100) under Vacuum and in Solution on Ag Particles. ACS Catalysis, 2017, 7, 3113-3120.	11.2	8
6	Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cationâ€Based Perovskite Films. ChemSusChem, 2017, 10, 3846-3853.	6.8	49
7	Cobalt Carbide Identified as Catalytic Site for the Dehydrogenation of Ethanol to Acetaldehyde. ACS Catalysis, 2017, 7, 5243-5247.	11.2	47
8	In-situ hydrogasification/regeneration of NiAl-hydrotalcite derived catalyst in the reaction of CO 2 reforming of methane: A versatile approach to catalyst recycling. Journal of CO2 Utilization, 2016, 14, 98-105.	6.8	28
9	Sonogashira Cross-Coupling and Homocoupling on a Silver Surface: Chlorobenzene and Phenylacetylene on Ag(100). Journal of the American Chemical Society, 2015, 137, 940-947.	13.7	50
10	Theory and Practice: Bulk Synthesis of C ₃ B and its H ₂ ―and Li‣torage Capacity. Angewandte Chemie - International Edition, 2015, 54, 5919-5923.	13.8	33
11	Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study. Materials Chemistry and Physics, 2015, 151, 29-33.	4.0	8
12	Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 259-275.	1.7	32
13	A study of the optical properties of metal-doped polyoxotitanium cages and the relationship to metal-doped titania. Dalton Transactions, 2014, 43, 8679.	3.3	33
14	Promotional Effect of the Base Metal on Bimetallic Au–Ni/CeO ₂ Catalysts Prepared from Core–Shell Nanoparticles. ACS Catalysis, 2013, 3, 2169-2180.	11.2	36
15	A single-source route to bulk samples of C3N and the co-evolution of graphitic carbon microspheres. Carbon, 2013, 64, 6-10.	10.3	20
16	A low-temperature single-source route to an efficient broad-band cerium(iii) photocatalyst using a bimetallic polyoxotitanium cage. RSC Advances, 2013, 3, 13659.	3.6	27
17	In situ spectroscopic characterization of some LaNi1-xCoxO3 perovskite catalysts active for CH4 reforming reactions. Materials Research Society Symposia Proceedings, 2012, 1446, 73.	0.1	1
18	LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, 2012, 123-124, 324-332.	20.2	116

#	Article	IF	CITATIONS
19	In Situ XAS Study of Synergic Effects on Ni–Co/ZrO ₂ Methane Reforming Catalysts. Journal of Physical Chemistry C, 2012, 116, 2919-2926.	3.1	126
20	Study of Oxygen Reactivity in La1â^'x Sr x CoO3â^'Î^ Perovskites for Total Oxidation of Toluene. Catalysis Letters, 2012, 142, 408-416.	2.6	49
21	Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts. Applied Catalysis A: General, 2012, 413-414, 43-51.	4.3	70
22	Modifying the Size of Nickel Metallic Particles by H ₂ /CO Treatment in Ni/ZrO ₂ Methane Dry Reforming Catalysts. ACS Catalysis, 2011, 1, 82-88.	11.2	128
23	Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO–CeO2–ZrO2 catalyst with a flower-like morphology. Applied Catalysis B: Environmental, 2011, 102, 627-637.	20.2	98
24	Chemical and electronic characterization of cobalt in a lanthanum perovskite. Effects of strontium substitution. Journal of Solid State Chemistry, 2010, 183, 27-32.	2.9	36
25	Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane. Applied Catalysis A: General, 2010, 384, 1-9.	4.3	112
26	Structure and microstructure of EB-PVD yttria thin films grown on Si (111) substrate. Vacuum, 2010, 85, 535-540.	3.5	3
27	Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 2010, 93, 346-353.	20.2	189
28	Complete n-hexane oxidation over supported Mn–Co catalysts. Applied Catalysis B: Environmental, 2010, 94, 46-54.	20.2	144
29	Operando XAS and Raman study on the structure of a supported vanadium oxide catalyst during the oxidation of H2S to sulphur. Catalysis Today, 2010, 155, 296-301.	4.4	25
30	Study of nanoporous catalysts in the selective catalytic reduction of NOx. Catalysis Today, 2010, 158, 78-88.	4.4	6
31	In situ spectroscopic detection ofSMSI effect in a Ni/CeO ₂ system: hydrogen-induced burial and dig out of metallic nickel. Chemical Communications, 2010, 46, 1097-1099.	4.1	140
32	Co3O4Â+ÂCeO2/SiO2 Catalysts for n-Hexane and CO Oxidation. Catalysis Letters, 2009, 129, 149-155.	2.6	25
33	Reactivity of LaNi1â^'y Co y O3â~'δ Perovskite Systems in the Deep Oxidation of Toluene. Catalysis Letters, 2009, 131, 164-169.	2.6	18
34	Structural characteristics and morphology of SmxCe1â^'xO2â^'x/2 thin films. Applied Surface Science, 2009, 255, 9085-9091.	6.1	8
35	Phase composition-dependent physical and mechanical properties of Yb Zr1â^'O2â^'/2 solid solutions. Journal of Physics and Chemistry of Solids, 2008, 69, 805-814.	4.0	6
36	Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. Journal of Catalysis, 2008, 257, 307-314.	6.2	202

#	Article	IF	CITATIONS
37	Size and shape of supported zirconia nanoparticles determined by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2007, 101, 124910.	2.5	7
38	Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE–IBAD. Surface and Coatings Technology, 2007, 202, 1256-1261.	4.8	20
39	Study of the first nucleation steps of thin films by XPS inelastic peak shape analysis. Surface and Interface Analysis, 2007, 39, 331-336.	1.8	9
40	Factors that Contribute to the Growth of Ag@TiO ₂ Nanofibers by Plasma Deposition. Plasma Processes and Polymers, 2007, 4, 515-527.	3.0	25
41	First stages of growth of cerium oxide deposited on alumina and reduced titania surfaces. Surface and Interface Analysis, 2006, 38, 510-513.	1.8	7
42	Correlation between optical properties and electronic parameters for mixed oxide thin films. Surface and Interface Analysis, 2006, 38, 752-756.	1.8	14
43	SiO2/TiO2 thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition. Thin Solid Films, 2006, 500, 19-26.	1.8	67
44	Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy. Thin Solid Films, 2006, 515, 1585-1591.	1.8	9
45	An in situ XAS study of Cu/ZrO catalysts under de-NO reaction conditions. Journal of Catalysis, 2005, 235, 295-301.	6.2	42
46	Structural, Optical, and Photoelectrochemical Properties of Mn+â^'TiO2 Model Thin Film Photocatalysts. Journal of Physical Chemistry B, 2004, 108, 17466-17476.	2.6	164
47	Monitoring Interface Interactions by XPS at Nanometric Tin Oxides Supported on Al2O3 and Sb2Ox. Journal of Physical Chemistry B, 2004, 108, 9905-9913.	2.6	27
48	Photoefficiency and Optical, Microstructural, and Structural Properties of TiO2Thin Films Used as Photoanodes. Langmuir, 2004, 20, 1688-1697.	3.5	73
49	Angle dependence of the O K edge absorption spectra of TiO2 thin films with preferential texture. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 248-254.	1.4	24
50	Molecular nitrogen implanted in Al2O3 by low energy N2+ ion bombardment. Solid State Communications, 2003, 128, 235-238.	1.9	7
51	Optical and crystallisation behaviour of TiO2 and V/TiO2 thin films prepared by plasma and ion beam assisted methods. Thin Solid Films, 2003, 429, 84-90.	1.8	35
52	The Auger parameter and the study of chemical and electronic interactions at the Sb2Ox/SnO2 and Sb2Ox/Al2O3 interfaces. Surface Science, 2003, 537, 228-240.	1.9	19
53	Characterization of Sb2 O3 subjected to different ion and plasma surface treatments. Surface and Interface Analysis, 2003, 35, 256-262.	1.8	13
54	Determination of texture by infrared spectroscopy in titanium oxide–anatase thin films. Journal of Applied Physics, 2003, 93, 4634-4645.	2.5	49

#	Article	IF	CITATIONS
55	Structural phase transitions in ZrO2 films induced by ion bombardment—Argon irradiation versus implantation. Journal of Applied Physics, 2003, 93, 5251-5254.	2.5	6
56	Degradation of LaMnO3â^'y surface layer in LaMnO3â^'y/metal interface. Applied Physics Letters, 2002, 81, 859-861.	3.3	26
57	X-ray Photoelectron Spectroscopy and Infrared Study of the Nature of Cu Species in Cu/ZrO2de-NOx Catalysts. Journal of Physical Chemistry B, 2002, 106, 10185-10190.	2.6	44
58	Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. Journal of Physical Chemistry B, 2002, 106, 6921-6929.	2.6	526
59	Ion beam effects in SiOx (x<2) subjected to low energy Ar+, He+ and N2+ bombardment. Nuclear Instruments & Methods in Physics Research B, 2002, 187, 465-474.	1.4	26
60	Structural effects due to the incorporation of Ar atoms in the lattice of ZrO2 thin films prepared by ion beam assisted deposition. Nuclear Instruments & Methods in Physics Research B, 2002, 194, 333-345.	1.4	7
61	Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD. Surface and Coatings Technology, 2002, 151-152, 289-293.	4.8	66
62	Corrosion resistant ZrO2 thin films prepared at room temperature by ion beam induced chemical vapour deposition. Surface and Coatings Technology, 2002, 151-152, 449-453.	4.8	27
63	Phase mixing in Fe/TiO2 thin films prepared by ion beam-induced chemical vapour deposition: optical and structural properties. Surface and Coatings Technology, 2002, 158-159, 552-557.	4.8	21
64	Determination of surface nanostructure from analysis of electron plasmon losses in XPS. Surface and Interface Analysis, 2002, 34, 201-205.	1.8	10
65	Structure and chemistry of SiOx (x<2) systems. Vacuum, 2002, 67, 491-499.	3.5	22
66	First Demonstration of in Situ Electrochemical Control of the Composition and Performance of an Alloy Catalyst during Reaction. Journal of Catalysis, 2002, 210, 237-240.	6.2	3
67	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2002, 15, 579-582.	0.5	4
68	Study of in situ adsorption and intercalation of cobaltocene into SnS2 single crystals by photoelectron spectroscopy. Surface Science, 2001, 477, L295-L300.	1.9	5
69	Surface microstructure of MgO deposited on SiO2 by analysis of plasmon excitations in photoemission experiments. Surface Science, 2001, 482-485, 1325-1330.	1.9	3
70	Ar stabilisation of the cubic/tetragonal phases of ZrO2 in thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films, 2001, 389, 34-42.	1.8	34
71	Plate reactor for testing catalysts in the form of thin films. Applied Catalysis B: Environmental, 2001, 31, L5-L10.	20.2	10
72	Near edge x-ray absorption fine structure spectroscopy study of atomic nitrogen implanted in Al2O3 by low energy N2+ bombardment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1024-1026.	2.1	3

JUAN PEDRO HOLGADO

#	Article	IF	CITATIONS
73	Study of CeO2 XPS spectra by factor analysis: reduction of CeO2. Applied Surface Science, 2000, 161, 301-315.	6.1	293
74	XPS study of oxidation processes of CeOx defective layers. Applied Surface Science, 2000, 158, 164-171.	6.1	248
75	Amorphisation and related structural effects in thin films prepared by ion beam assisted methods. Surface and Coatings Technology, 2000, 125, 116-123.	4.8	15
76	Characterisation by X-ray absorption spectroscopy of oxide thin films prepared by ion beam-induced CVD. Thin Solid Films, 2000, 377-378, 460-466.	1.8	12
77	New efficient catalysts for the oxidative coupling of methane. Catalysis Letters, 2000, 68, 191-196.	2.6	76
78	Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. Journal of Catalysis, 1998, 177, 259-266.	6.2	212
79	In SituElectrochemical Promotion by Sodium of the Selective Hydrogenation of Acetylene over Platinum. Journal of Catalysis, 1998, 179, 231-240.	6.2	38
80	XPS/TPR study of the reducibility of M/CeO2 catalysts (M=Pt, Rh): Does junction effect theory apply?. Studies in Surface Science and Catalysis, 1995, 96, 109-122.	1.5	17
81	An XPS study of the mixing effects induced by ion bombardment in composite oxides. Applied Surface Science, 1993, 68, 453-459.	6.1	46
82	Mixing effects in CeO2/TiO2 and CeO2/SiO2 systems submitted to Ar+ sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 58-65.	2.1	25
83	Use of factor analysis and XPS to study defective nickel oxide. The Journal of Physical Chemistry, 1992, 96, 3080-3086.	2.9	100
84	An XPS study of the Ar+-induced reduction of Ni2+ in NiO and Ni-Si oxide systems. Applied Surface Science, 1991, 51, 19-26.	6.1	49