
Jun Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360461/publications.pdf Version: 2024-02-01

Ιτιν Υιν

#	Article	IF	CITATIONS
1	Scalable Preparation of Highâ€Performance ZnO–SnO ₂ Cascaded Electron Transport Layer for Efficient Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100639.	5.8	13
2	Resonanceâ€Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells. Advanced Materials, 2022, 34, e2107111.	21.0	21
3	Synergistic Effect between NiO <i>_x</i> and P3HT Enabling Efficient and Stable Hole Transport Pathways for Regular Perovskite Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	17
4	Cylindrical Al Nano-Dimer Induced Polarization in Deep UV Region. Nanoscale Research Letters, 2022, 17, .	5.7	1
5	Crown Etherâ€Assisted Growth and Scaling Up of FACsPbl ₃ Films for Efficient and Stable Perovskite Solar Modules. Advanced Functional Materials, 2021, 31, 2008760.	14.9	50
6	Understanding liquefaction in halide perovskites upon methylamine gas exposure. RSC Advances, 2021, 11, 20423-20428.	3.6	1
7	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	13.7	59
8	Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light: Science and Applications, 2021, 10, 113.	16.6	39
9	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
10	Enhancement of Room-Temperature Photoluminescence and Valley Polarization of Monolayer and Bilayer WS ₂ via Chiral Plasmonic Coupling. ACS Applied Materials & Interfaces, 2021, 13, 35097-35104.	8.0	9
11	Sulfonate-Assisted Surface lodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society, 2021, 143, 10624-10632.	13.7	101
12	Dual-Mode Plasmonic Coupling-Enhanced Color Conversion of Inorganic CsPbBr ₃ Perovskite Quantum Dot Films. ACS Applied Materials & Interfaces, 2021, 13, 32856-32864.	8.0	5
13	Interface Engineering of Cubic Zinc Metatitanate as an Excellent Electron Transport Material for Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900533.	5.8	12
14	Methylamine-Dimer-Induced Phase Transition toward MAPbI ₃ Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society, 2020, 142, 6149-6157.	13.7	59
15	4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells. Science China Chemistry, 2020, 63, 1053-1058.	8.2	13
16	Moisture-tolerant and high-quality α-CsPbI ₃ films for efficient and stable perovskite solar modules. Journal of Materials Chemistry A, 2020, 8, 9597-9606.	10.3	62
17	3D CoMoSe4 Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO4 Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery. Nanoscale Research Letters, 2019, 14, 213.	5.7	14
18	Light-Trapping Engineering for the Enhancements of Broadband and Spectra-Selective Photodetection by Self-Assembled Dielectric Microcavity Arrays. Nanoscale Research Letters, 2019, 14, 187.	5.7	2

Jun Yin

#	Article	lF	CITATIONS
19	Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers. ACS Applied Materials & Interfaces, 2019, 11, 19631-19637.	8.0	11
20	Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. Journal of the American Chemical Society, 2019, 141, 6345-6351.	13.7	149
21	Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. Journal of Materials Chemistry A, 2019, 7, 26849-26857.	10.3	40
22	Manipulation of the crystallization of perovskite films induced by a rotating magnetic field during blade coating in air. Journal of Materials Chemistry A, 2018, 6, 3986-3995.	10.3	13
23	Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics' Robust Preparation: From Blade Coating to Painting. ACS Applied Materials & Interfaces, 2018, 10, 23103-23111.	8.0	17
24	Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application. ACS Applied Materials & Interfaces, 2017, 9, 13564-13570.	8.0	22
25	Optimized design of multi-shell ZnO/TiO2/ZnSe nanowires decorated with Ag nanoparticles for photocatalytic applications. RSC Advances, 2016, 6, 71800-71806.	3.6	10
26	Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. Journal of Materials Chemistry A, 2016, 4, 13203-13210.	10.3	77
27	Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Journal of the American Chemical Society, 2016, 138, 9919-9926.	13.7	249
28	Light absorption enhancement by embedding submicron scattering TiO ₂ nanoparticles in perovskite solar cells. RSC Advances, 2016, 6, 24596-24602.	3.6	25
29	Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells. Nanoscale, 2016, 8, 3274-3277.	5.6	24
30	Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. Journal of Materials Chemistry A, 2015, 3, 16860-16866.	10.3	92
31	Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection. Nanoscale, 2015, 7, 13495-13502.	5.6	7
32	Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 2015, 7, 9443-9447.	5.6	179
33	Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 10914-10917.	13.7	229
34	Plasmonic-enhanced self-cleaning activity on asymmetric Ag/ZnO surface-enhanced Raman scattering substrates under UV and visible light irradiation. Journal of Materials Chemistry A, 2014, 2, 7747-7753.	10.3	45
35	Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Nanoscale, 2014, 6, 3934-3940.	5.6	27
36	Surface Plasmon Enhanced Hot Exciton Emission in Deep UVâ€Emitting AlGaN Multiple Quantum Wells. Advanced Optical Materials, 2014, 2, 451-458.	7.3	32

Jun Yin

#	ARTICLE	IF	CITATIONS
37	Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14344.	10.3	59
38	Fabrication of 3D hexagonal bottle-like Si–SnO2 core–shell nanorod arrays as anode material in on chip micro-lithium-ion-batteries. Journal of Materials Chemistry A, 2013, 1, 7896.	10.3	45
39	Self-assembled hollow nanosphere arrays used as low Q whispering gallery mode resonators on thin film solar cells for light trapping. Physical Chemistry Chemical Physics, 2013, 15, 16874.	2.8	31
40	Effect of the surface-plasmon–exciton coupling and charge transfer process on the photoluminescence of metal–semiconductor nanostructures. Nanoscale, 2013, 5, 4436.	5.6	43
41	Band edge emission enhancement by quadrupole surface plasmon–exciton coupling using direct-contact Ag/ZnO nanospheres. Nanoscale, 2013, 5, 574-580.	5.6	42
42	Multi-hot spot configuration on urchin-like Ag nanoparticle/ZnO hollow nanosphere arrays for highly sensitive SERS. Journal of Materials Chemistry A, 2013, 1, 15010.	10.3	64
43	Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. Journal of Materials Chemistry, 2012, 22, 7902.	6.7	82