Jorge F S Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenic Expression of <i>Prunus persica</i> Salt Overly Sensitive 2 (<i>PpSOS2)</i> in the <i>atsos2</i> Mutant Imparts Salt Tolerance in Arabidopsis. ACS Agricultural Science and Technology, 2022, 2, 153-164.	2.3	1
2	Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules, 2022, 12, 688.	4.0	2
3	Phytochemical modulation of P-Glycoprotein and its gene expression in an ivermectin-resistant Haemonchus contortus isolate in vitro. Veterinary Parasitology, 2022, 305, 109713.	1.8	9
4	Uses and losses of nitrogen by maize and cotton plants under salt stress. Archives of Agronomy and Soil Science, 2021, 67, 1119-1133.	2.6	4
5	Transcript Analysis of Two Spinach Cultivars Reveals the Complexity of Salt Tolerance Mechanisms. ACS Agricultural Science and Technology, 2021, 1, 64-75.	2.3	5
6	Influence of Moderate to High Salinity on the Phytochemical Profiles of Two Salinity-Tolerant Spinach Genotypes. ACS Food Science & Technology, 2021, 1, 205-214.	2.7	4
7	Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Scientific Reports, 2021, 11, 5210.	3.3	13
8	Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS ONE, 2021, 16, e0252242.	2.5	5
9	Development and Application of a Fast Gas Chromatographic Method Offer New Insights into I-theanine Production Regulation in Camellia sinensis L Journal of Agricultural and Food Chemistry, 2021, 69, 11142-11150.	5.2	0
10	Potential Agricultural Use of Reject Brine from Desalination Plants in Family Farming Areas. , 2021, , 101-118.		2
11	Environmental, Agricultural, and Socioeconomic Impacts of Salinization to Family-Based Irrigated Agriculture in the Brazilian SemiaridÂRegion. , 2021, , 37-48.		0
12	Translocation of photoassimilates in melon vines and fruits under salinity using 13C isotope. Scientia Horticulturae, 2020, 274, 109659.	3.6	5
13	Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Scientific Reports, 2020, 10, 21087.	3.3	11
14	Germination and Growth of Spinach under Potassium Deficiency and Irrigation with High-Salinity Water. Plants, 2020, 9, 1739.	3.5	9
15	Functional relationships between aboveground and belowground spinach (Spinacia oleracea L., cv.) Tj ETQq1 1 137207.	0.784314 8.0	rgBT /Overlo 16
16	Spinach Plants Favor the Absorption of K+ over Na+ Regardless of Salinity, and May Benefit from Na+ When K+ is Deficient in the Soil. Plants, 2020, 9, 507.	3.5	22
17	Variable salinity responses and comparative gene expression in woodland strawberry genotypes. Scientia Horticulturae, 2019, 254, 61-69.	3.6	13
18	Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Scientia Horticulturae, 2019, 243, 401-410.	3.6	42

JORGE F S FERREIRA

#	Article	IF	CITATIONS
19	Evaluation of encapsulated anethole and carvone in lambs artificially- and naturally-infected with Haemonchus contortus. Experimental Parasitology, 2019, 197, 36-42.	1.2	25
20	Biofertilizers in horticultural crops. Comunicata Scientiae, 2019, 10, 415-428.	0.4	9
21	Growth and physiology of maize under water salinity and nitrogen fertilization in two soils. Revista Brasileira De Engenharia Agricola E Ambiental, 2019, 23, 907-913.	1.1	15
22	Sugar yield and composition of tubers from Jerusalem Artichoke (<i>Helianthus tuberosus</i>) irrigated with saline waters. Biotechnology and Bioengineering, 2018, 115, 1475-1484.	3.3	18
23	Preparative Separation of High-Purity Dihydroartemisinic Acid from Artemisinin Production Waste by Combined Chromatography. Chemical and Pharmaceutical Bulletin, 2018, 66, 319-326.	1.3	1
24	Spinach (Spinacea oleracea L.) Response to Salinity: Nutritional Value, Physiological Parameters, Antioxidant Capacity, and Gene Expression. Agriculture (Switzerland), 2018, 8, 163.	3.1	33
25	Seasonal and Differential Sesquiterpene Accumulation in Artemisia annua Suggest Selection Based on Both Artemisinin and Dihydroartemisinic Acid may Increase Artemisinin in planta. Frontiers in Plant Science, 2018, 9, 1096.	3.6	13
26	Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua. Frontiers in Plant Science, 2018, 9, 358.	3.6	30
27	Evidence of nitrogen and potassium losses in soil columns cultivated with maize under salt stress. Revista Brasileira De Engenharia Agricola E Ambiental, 2018, 22, 553-557.	1.1	8
28	Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Scientific Reports, 2017, 7, 42958.	3.3	91
29	Synergistic interaction of ten essential oils against Haemonchus contortus in vitro. Veterinary Parasitology, 2017, 243, 47-51.	1.8	66
30	Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Science of the Total Environment, 2017, 579, 1485-1495.	8.0	39
31	Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions. Irrigation Science, 2017, 35, 533-547.	2.8	9
32	Terminalia catappa : Chemical composition, in vitro and in vivo effects on Haemonchus contortus. Veterinary Parasitology, 2017, 246, 118-123.	1.8	14
33	Isolation of Dihydroartemisinic Acid from <i>Artemisia annua</i> L. By-Product by Combining Ultrasound-Assisted Extraction with Response Surface Methodology. Chemical and Pharmaceutical Bulletin, 2017, 65, 746-753.	1.3	5
34	Biofuel production from Jerusalem artichoke tuber inulins: a review. Biofuel Research Journal, 2017, 4, 587-599.	13.3	21
35	Evapotranspiration as a Criterion to Estimate Nitrogen Requirement of Maize Under Salt Stress. Journal of Agronomy and Crop Science, 2016, 202, 192-202.	3.5	27
36	Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters. Industrial Crops and Products, 2016, 94, 1009-1024.	5.2	46

JORGE F S FERREIRA

#	Article	IF	CITATIONS
37	Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa (Medicago sativa, L.) in Response to Saline Irrigation Water. Agriculture (Switzerland), 2015, 5, 577-597.	3.1	47
38	Flower morphology and floral sequence in <i>Artemisia annua</i> (Asteraceae) ¹ . American Journal of Botany, 2014, 101, 875-885.	1.7	17
39	The effects of combining <i>Artemisia annua</i> and <i>Curcuma longa</i> ethanolic extracts in broilers challenged with infective oocysts of <i>Eimeria acervulina</i> and <i>E. maxima</i> . Parasitology, 2014, 141, 347-355.	1.5	11
40	Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes. Parasitology Research, 2014, 113, 2345-2353.	1.6	29
41	Effects of Artemisia annua and Foeniculum vulgare on chickens highly infected with Eimeria tenella (Phylum Apicomplexa). Acta Veterinaria Scandinavica, 2014, 56, 22.	1.6	34
42	Effect of Mineral Nutrition, Growth Regulators and Environmental Stresses on Biomass Production and Artemisinin Concentration of Artemisia annua L. , 2014, , 157-172.		4
43	Artemisinin concentration and antioxidant capacity of Artemisia annua distillation byproduct. Industrial Crops and Products, 2013, 41, 294-298.	5.2	23
44	Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Veterinary Parasitology, 2013, 192, 218-227.	1.8	60
45	Erratum to "Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows―(J. Dairy Sci. 94:5065–5079). Journal of Dairy Science, 2012, 95, 498.	3.4	Ο
46	Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Canadian Journal of Animal Science, 2012, 92, 395-408.	1.5	18
47	Adaptation and agronomic performance of Artemisia annua L. under lowland humid tropical conditions. Industrial Crops and Products, 2012, 39, 190-197.	5.2	20
48	Use of Artemisia annua as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance. Veterinary Parasitology, 2012, 186, 178-187.	1.8	44
49	Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Veterinary Parasitology, 2012, 186, 312-318.	1.8	28
50	Cytotoxicity of Ethanolic Extracts ofArtemisia annuato Molt-4 Human Leukemia Cells. Planta Medica, 2011, 77, 1788-1793.	1.3	27
51	Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. Journal of Dairy Science, 2011, 94, 5065-5079.	3.4	72
52	Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Veterinary Parasitology, 2011, 182, 264-268.	1.8	64
53	Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Veterinary Parasitology, 2011, 183, 103-108.	1.8	77
54	In vitro trematocidal effects of crude alcoholic extracts of Artemisia annua, A. absinthium, Asimina triloba, and Fumaria officinalis. Parasitology Research, 2011, 109, 1585-1592.	1.6	78

#	Article	IF	CITATIONS
55	Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones) Tj ETQq1 1 0.7843	14 rgBT /(1.8	Overlock 10 T
56	Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood(Artemisia) Tj ETQq0 () 0 rgBT /(Overlock 10 Tf
57	Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer. Molecules, 2010, 15, 3135-3170.	3.8	372
58	Drying Affects Artemisinin, Dihydroartemisinic Acid, Artemisinic Acid, and the Antioxidant Capacity of <i>Artemisia annua</i> L. Leaves. Journal of Agricultural and Food Chemistry, 2010, 58, 1691-1698.	5.2	63
59	Analysis of underivatized artemisinin and related sesquiterpene lactones by highâ€performance liquid chromatography with ultraviolet detection. Phytochemical Analysis, 2009, 20, 91-97.	2.4	69
60	Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L Food Chemistry, 2009, 115, 1240-1246.	8.2	164
61	Affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron-capture detection. Journal of Chromatography A, 2008, 1190, 302-306.	3.7	28
62	Seasonal and Post-harvest Accumulation of Artemisinin, Artemisinic Acid, and Dihydroartemisinic Acid in Three Accessions of Artemisia annua Cultivated in West Virginia, USA. Planta Medica, 2008, 74, .	1.3	10
63	Chemical and biological stability of artemisinin in bovine rumen fluid and its kinetics in goats (Capra) Tj ETQq1 1	0.78431 0.7	4 rgBT /Overlc
64	Short-Term Response ofArtemisia annuato Lime, P, K, and N in a Dystrophic Soil. Journal of Herbs, Spices and Medicinal Plants, 2007, 12, 49-59.	1.1	4
65	Nutrient Deficiency in the Production of Artemisinin, Dihydroartemisinic Acid, and Artemisinic Acid inArtemisia annuaL Journal of Agricultural and Food Chemistry, 2007, 55, 1686-1694.	5.2	74
66	Direct analysis of artemisinin from Artemisia annua L. using high-performance liquid chromatography with evaporative light scattering detector, and gas chromatography with flame ionization detector. Journal of Chromatography A, 2006, 1133, 254-258.	3.7	65
67	Artemisia annua as a herbal tea for malaria. African Journal of Traditional Complementary and Alternative Medicines, 2006, 4, 121-3.	0.2	11
68	Cultivation and genetics ofArtemisia annuaL. for increased production of the antimalarial artemisinin. Plant Genetic Resources: Characterisation and Utilisation, 2005, 3, 206-229.	0.8	102
69	Simplified Extraction of Ginsenosides from American Ginseng (Panax quinquefoliusL.) for High-Performance Liquid Chromatographyâ^'Ultraviolet Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 9867-9873.	5.2	76
70	Production of Artemisinin from in Vitro Cultures of Artemisia annua L Biotechnology in Agriculture and Forestry, 2002, , 1-12.	0.2	5
71	Immunoquantitative analysis of artemisinin from Artemisia annua using polyclonal antibodies. Phytochemistry, 1996, 41, 97-104.	2.9	56
72	Roots as an enhancing factor for the production of artemisinin in shoot cultures of Artemisia annua. Plant Cell, Tissue and Organ Culture, 1996, 44, 211-217.	2.3	63

JORGE F S FERREIRA

#	Article	IF	CITATIONS
73	Floral Morphology of Artemisia annua with Special Reference to Trichomes. International Journal of Plant Sciences, 1995, 156, 807-815.	1.3	109
74	Developmental Studies ofArtemisia annua: Flowering and Artemisinin Production Under Greenhouse and Field Conditions. Planta Medica, 1995, 61, 167-170.	1.3	123
75	Relationship of Artemisinin Content of Tissue-Cultured, Greenhouse-Grown, and Field-Grown Plants of Artemisia annua1. Planta Medica, 1995, 61, 351-355.	1.3	59
76	A comparison of gas chromatography and high performance liquid chromatography for artemisinin analyses. Phytochemical Analysis, 1994, 5, 116-120.	2.4	40