
Karen L Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nuclear Lamina. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040113.	5.5	28
2	HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood, 2022, 139, 2797-2815.	1.4	20
3	Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121816119.	7.1	33
4	Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Science Alliance, 2021, 4, e202000774.	2.8	26
5	The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Current Opinion in Genetics and Development, 2021, 67, 163-173.	3.3	25
6	Abstract 2414: HMGA1 induces <i>FGF19</i> to drive tumor progression and recruit cancer associated fibroblasts in pancreatic adenocarcinoma. Cancer Research, 2021, 81, 2414-2414.	0.9	0
7	Abstract 2666: HMGA1: An epigenetic switch required for MPN progression by inducingGATA-2and cell cycle progression through enhancer rewiring. , 2021, , .		0
8	Lamin C is required to establish genome organization after mitosis. Genome Biology, 2021, 22, 305.	8.8	24
9	HMGA1 Chromatin Regulators Drive Progression in Myeloproliferative Neoplasms through Epigenetic Rewiring to Induce Networks Involved in GATA2 and Proliferation. Blood, 2021, 138, 625-625.	1.4	0
10	BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. Journal of Proteome Research, 2018, 17, 759-769.	3.7	70
11	The Nuclear Lamina and Genome Organization. , 2018, , 321-343.		2
12	A Lamina-Associated Domain Border Governs Nuclear Lamina Interactions, Transcription, and Recombination of the Tcrb Locus. Cell Reports, 2018, 25, 1729-1740.e6.	6.4	37
13	An Accessible Proteogenomics Informatics Resource for Cancer Researchers. Cancer Research, 2017, 77, e43-e46.	0.9	27
14	Tagged Chromosomal Insertion Site System. Methods in Enzymology, 2016, 569, 433-453.	1.0	6
15	The High Mobility Group A1 (HMGA1) gene is highly overexpressed in human uterine serous carcinomas and carcinosarcomas and drives Matrix Metalloproteinase-2 (MMP-2) in a subset of tumors. Gynecologic Oncology, 2016, 141, 580-587.	1.4	26
16	Proteomic/Transcriptomic Signatures of Infant MLL-r Rearranged B-ALL at Diagnosis and Relapse Reveal Lineage Plasticity and Diagnostic Heterogeneity. Blood, 2016, 128, 2697-2697.	1.4	0
17	Finding the Middlemen in Genome Organization. Developmental Cell, 2015, 35, 670-671.	7.0	4
18	Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. Journal of Cell Biology, 2015, 208, 33-52.	5.2	266

Karen L Reddy

#	Article	IF	CITATIONS
19	Differential Signaling through p190 and p210 Forms of BCR-ABL Fusion Proteins Revealed By Proteomic Analysis. Blood, 2015, 126, 3651-3651.	1.4	1
20	Prediction of Gene Activity in Early B Cell Development Based on an Integrative Multi-Omics Analysis. Journal of Proteomics and Bioinformatics, 2014, 07, .	0.4	13
21	Genome regulation at the peripheral zone: lamina associated domains in development and disease. Current Opinion in Genetics and Development, 2014, 25, 50-61.	3.3	66
22	NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Current Opinion in Cell Biology, 2014, 28, 105-120.	5.4	60
23	Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis. ELife, 2014, 3, e02996.	6.0	51
24	Higher order chromatin organization in cancer. Seminars in Cancer Biology, 2013, 23, 109-115.	9.6	83
25	DNA Sequence-Dependent Compartmentalization and Silencing of Chromatin at the Nuclear Lamina. Cell, 2012, 149, 1474-1487.	28.9	405
26	Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation. PLoS ONE, 2010, 5, e14342.	2.5	111
27	Molecular Pathways and Mechanisms Regulating the Recombination of Immunoglobulin Genes during B-Lymphocyte Development. Advances in Experimental Medicine and Biology, 2009, 650, 133-147.	1.6	14
28	Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nature Immunology, 2008, 9, 802-809.	14.5	68
29	Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nature Immunology, 2008, 9, 927-936.	14.5	228
30	The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Developmental Biology, 2006, 289, 100-114.	2.0	16
31	Regulation of interleukin 7–dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nature Immunology, 2005, 6, 836-843.	14.5	131
32	Assembling a Gene Regulatory Network for Specification of the B Cell Fate. Developmental Cell, 2004, 7, 607-617.	7.0	212
33	vrille, Pdp1, and dClock Form a Second Feedback Loop in the Drosophila Circadian Clock. Cell, 2003, 112, 329-341.	28.9	474
34	The Drosophila PAR Domain Protein 1 (Pdp1) Gene Encodes Multiple Differentially Expressed mRNAs and Proteins through the Use of Multiple Enhancers and Promoters. Developmental Biology, 2000, 224, 401-414.	2.0	42