
Matthew Pitkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
3	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
4	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
5	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
6	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
7	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
8	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review</mml:math 	nml ma text>	<nametic and="" st<="" states="" td=""></nametic>
9	Letters, 2020, 125, 101102. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
10	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
11	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	4.7	674
12	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
13	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
14	Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. Astrophysical Journal, Supplement Series, 2019, 241, 27.	7.7	526
15	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
16	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
17	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
18	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406

#	Article	IF	CITATIONS
19	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
20	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
21	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
22	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
23	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	1.6	259
24	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
25	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
26	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	4.4	213
27	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
28	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
29	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	4.7	165
30	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
31	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
32	Gravitational Wave Detection by Interferometry (Ground and Space). Living Reviews in Relativity, 2011, 14, 5.	26.7	154
33	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
34	Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D, 2004, 69, .	4.7	145
35	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
36	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143

#	Article	IF	CITATIONS
37	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214.	4.0	133
38	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
39	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
40	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
41	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
42	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
43	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78.	4.0	123
44	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
45	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
46	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
47	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
48	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
49	Search for gravitational waves from galactic and extra-galactic binary neutron stars. Physical Review D, 2005, 72, .	4.7	109
50	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	4.7	108
51	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
52	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
53	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
54	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105

#	Article	IF	CITATIONS
55	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
56	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
57	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
58	Analysis of first LIGO science data for stochastic gravitational waves. Physical Review D, 2004, 69, .	4.7	96
59	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
60	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
61	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
62	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
63	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
64	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
65	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
66	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
67	Status of GEO 600. Classical and Quantum Gravity, 2004, 21, S417-S423.	4.0	85
68	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
69	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
70	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
71	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	4.7	79
72	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79

#	Article	IF	CITATIONS
73	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
74	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
75	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
76	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
77	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	4.7	74
78	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
79	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
80	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
81	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
82	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
83	Probing dynamical gravity with the polarization of continuous gravitational waves. Physical Review D, 2017, 96, .	4.7	66
84	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
85	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
86	Evidence for a Minimum Ellipticity in Millisecond Pulsars. Astrophysical Journal Letters, 2018, 863, L40.	8.3	63
87	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
88	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60
89	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
90	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60

#	Article	IF	CITATIONS
91	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
92	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
93	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
94	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
95	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
96	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
97	Detecting beyond-Einstein polarizations of continuous gravitational waves. Physical Review D, 2015, 91, .	4.7	54
98	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
99	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn>hyper of 27 December 2004 using LIGO. Physical Review D. 2007, 76.</mml:math 	flåre	51
100	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	4.7	50
101	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
102	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
103	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
104	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
105	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
106	Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Physical Review D, 2017, 95, .	4.7	45
107	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
108	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44

#	Article	IF	CITATIONS
109	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
110	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
111	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
112	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
113	Nested sampling for physical scientists. Nature Reviews Methods Primers, 2022, 2, .	21.2	40
114	Evidence-based search method for gravitational waves from neutron star ring-downs. Physical Review D, 2007, 76, .	4.7	39
115	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
116	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
117	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
118	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
119	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
120	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
121	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
122	Comparison of methods for the detection of gravitational waves from unknown neutron stars. Physical Review D, 2016, 94, .	4.7	34
123	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	4.0	33
124	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
125	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
126	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	7.8	32

#	Article	IF	CITATIONS
127	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
128	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
129	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
130	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
131	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
132	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
133	psrqpy: a python interface for querying the ATNF pulsar catalogue. Journal of Open Source Software, 2018, 3, 538.	4.6	29
134	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
135	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198.	4.0	27
136	Prospects of observing continuous gravitational waves from known pulsars. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1849-1863.	4.4	27
137	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
138	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
139	First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Physical Review D, 2019, 100, .	4.7	22
140	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
141	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
142	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
143	Commissioning, characterization and operation of the dual-recycled GEO 600. Classical and Quantum Gravity, 2004, 21, S1737-S1745.	4.0	15
144	Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets. Classical and Quantum Gravity, 2007, 24, S541-S549.	4.0	15

#	Article	IF	CITATIONS
145	A Bayesian method for detecting stellar flares. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2268-2284.	4.4	15
146	Hierarchical Bayesian method for detecting continuous gravitational waves from an ensemble of pulsars. Physical Review D, 2018, 98, .	4.7	15
147	A report on the status of the GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2003, 20, S581-S591.	4.0	14
148	First results and future prospects for dual-harmonic searches for gravitational waves from spinning neutron stars. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4400-4421.	4.4	14
149	Comment on "Measurements of Newton's gravitational constant and the length of day―by Anderson J. D. et al Europhysics Letters, 2015, 111, 30002.	2.0	14
150	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
151	Inference on inspiral signals using LISA MLDC data. Classical and Quantum Gravity, 2007, 24, S521-S527.	4.0	13
152	Establishing the significance of continuous gravitational-wave detections from known pulsars. Physical Review D, 2020, 102, .	4.7	13
153	Astrophysical calibration of gravitational-wave detectors. Physical Review D, 2016, 93, .	4.7	11
154	OctApps: a library of Octave functions for continuous gravitational-wave data analysis. Journal of Open Source Software, 2018, 3, 707.	4.6	11
155	A new code for parameter estimation in searches for gravitational waves from known pulsars. Journal of Physics: Conference Series, 2012, 363, 012041.	0.4	9
156	Extending gravitational wave burst searches with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2688-2697.	4.4	8
157	Searching for gravitational waves from the Crab pulsar—the problem of timing noise. Classical and Quantum Gravity, 2004, 21, S843-S846.	4.0	7
158	GLITCH OR ANTI-GLITCH: A BAYESIAN VIEW. Astrophysical Journal Letters, 2014, 784, L41.	8.3	7
159	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
160	Binary system delays and timing noise in searches for gravitationalwaves from known pulsars. Physical Review D, 2007, 76, .	4.7	4
161	Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors. Journal of Modern Optics, 2014, 61, S10-S45.	1.3	4
162	Searching for gravitational waves from known pulsars. Classical and Quantum Gravity, 2005, 22, S1277-S1282.	4.0	3

#	Article	IF	CITATIONS
16	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
16	A targeted spectral interpolation algorithm for the detection of continuous gravitational waves. Classical and Quantum Gravity, 2017, 34, 015010.	4.0	3
16	5 The status of GEO 600. , 2004, , .		2
16	 Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, . 	4.7	2
16	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
16	 Reduced order modelling in searches for continuous gravitational waves – I. Barycentring time delays. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4510-4519. 	4.4	2
16	 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1. 		2
17	 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo., 2016, 19, 1. 		1
17	1 Detector characterization in GEO 600. Classical and Quantum Gravity, 2003, 20, S731-S739.	4.0	0
17	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar 2 gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	0
17	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
17	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
17	 Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, . 	4.7	0
17	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar 6 gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
17	An evidence based time-frequency search method for gravitational waves from pulsar glitches. Journal of Physics: Conference Series, 2008, 122, 012035.	0.4	0
17	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
17	9 Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
18	0 Upper limit to the transverse to longitudinal motion coupling of a waveguide mirror. Classical and Quantum Gravity, 2015, 32, 175005.	4.0	0

#	Article	IF	CITATIONS
181	lintegrate: A C/Python numerical integration library for working in log-space. Journal of Open Source Software, 2022, 7, 4231.	4.6	0